
DRIFT: Deep Reinforcement Learning for Intelligent Floating
Platforms Trajectories

Matteo El-Hariry
Space Robotics (SpaceR) Research

Group - SnT - University of
Luxembourg

matteo.elhariry@uni.lu

Antoine Richard
Space Robotics (SpaceR) Research

Group - SnT - University of
Luxembourg

antoine.richard@uni.lu

Vivek Muralidharan
Space Robotics (SpaceR) Research

Group - SnT - University of
Luxembourg

vivek.muralidharan@uni.lu

Matthieu Geist
Cohere

Toronto, Canada
matthieu@cohere.com

Miguel Olivares-Mendez
Space Robotics (SpaceR) Research

Group - SnT - University of
Luxembourg

miguel.olivaresmendez@uni.lu

ABSTRACT
This investigation introduces a novel deep reinforcement learning-
based suite to control floating platforms in both simulated and
real-world environments. Floating platforms serve as versatile test-
beds to emulate microgravity environments on Earth, useful to
test autonomous navigation systems for space applications. Our
approach addresses the system and environmental uncertainties in
controlling such platforms by training policies capable of precise
maneuvers amid dynamic and unpredictable conditions. Leveraging
Deep Reinforcement Learning (DRL) techniques, our suite achieves
robustness, adaptability, and good transferability from simulation
to reality. Our deep reinforcement learning framework provides ad-
vantages such as fast training times, large-scale testing capabilities,
rich visualization options, and ROS bindings for integration with
real-world robotic systems. Being open access, our suite serves as
a comprehensive platform for practitioners who want to replicate
similar research in their own simulated environments and labs.

KEYWORDS
Deep Reinforcement Learning, Autonomous Spacecrafts

1 INTRODUCTION
Across the globe, there has been an exponential growth in the
adoption of small satellites, including cubesats [6, 12]. Thanks to
their cost-effectiveness, they are now extensively used for both
commercial and scientific purposes. Consequently, several countries
and their space administrations have actively invested in advancing
small satellite technology over the last few decades. The surge in
space missions is creating a growing demand to test and validate
the flight software and hardware on the ground prior to employing
them in space. These experiments aim to enhance the historically
low success rates of missions in space [19].

Improving the reliability and autonomy of the motion systems
plays a key role in boosting mission success. Currently, the primary
approach to enhancing autonomous navigation and control of such
systems involves conducting performance tests. These tests help
understand essential parameters and their relationships within
the control scheme involving different sensors and actuators. This
knowledge is pivotal to the design and operation of these systems,

Figure 1: Floating platform in ZeroG Laboratory.

contributing significantly to mission success rates [12]. To emulate
free-floating and free-flying satellite motion, a common solution
is to use floating platforms: a rigid structure floating on top of an
extremely flat and smooth surface using air bearings [21]. This
allows 2D motions with very low friction, effectively replicating
space-like conditions in a plane.

The raditional methods of aerospace vehicle trajectory planning
primarily rely on optimal control techniques [19], which involve the
derivation of open-loop control solutions based on system models
and predefined objectives. These approaches are intricate and often
necessitate specialized optimization software to find flight paths
adhering to various constraints. However, as aerospace vehicles
regularly encounter state disturbances and uncertainties, there is a
need for more robust and adaptable control strategies. In response
to this challenge, this paper introduces a novel approach that har-
nesses the power of Deep Reinforcement Learning (DRL) to control
a floating platform (FP) within a 2D environment. The utilization
of DRL offers an alternative to the conventional deterministic and
expert-driven control methods prevalent in aerospace trajectory
planning. DRL involves a goal-oriented agent that interacts with its
environment, learning control policy approximations. Importantly,
this learning process enables the agent to handle stochastic events

in the environments by exploring the state-control space using
reward signals.

Our main contributions lie in three key areas. First, we enhance
RANS [7], a simulator previously developed by our team, to accom-
modate more complex tasks and a diverse range of environment ran-
domization profiles. Second, we demonstrate the high-performance
capabilities of the Proximal Policy Optimization (PPO) [24] algo-
rithm in both simulated and real scenarios. We evaluate its effec-
tiveness by completing two distinct tasks: navigating to a specific
position and orientation, and tracking a target velocity. Finally,
we conduct a comprehensive comparison between the PPO-based
approach and traditional optimal control algorithms, such as the
Linear Quadratic Regulator (LQR) [11], showcasing the benefits
and drabacks of the two methods under different environmental
conditions.

2 RELATEDWORK
2.1 Floating Platforms control
Floating platforms are systems with air bearings attached to their
lower surface. These bearings release pressurized air creating a thin
film to levitate the platform; thereby counterbalancing its weight
to produce a microgravity effect (in-plane components of gravity
on the main body are negligible), thus emulating the friction-less
and weightless environment of orbital spaceflight.

Recently, many research labs and organizations have focused
on developing air bearings-based simulators with 3-DoF robotic
systems [1, 10, 13, 18, 21–23, 29, 30], making them the most popular
testing facility to emulate microgravity on Earth.

To emulate mission scenarios for autonomous spacecraft track-
ing, servicing, rendezvous, and capture of a free-floating target,
several works have further improved these platforms with 3-DoF
robotic manipulators [4, 22, 23]. A typical approach for robotic
arms mounted on air bearings platforms is to decouple the platform
and the arm maneuvers. Sabatini et al. [22] focus on obtaining a
coordinated maneuver in which the end effector moves thanks to
the platform motion, hence optimizing fuel efficiency. They provide
results both in simulation and on a real FP.

When focusing solely on the maneuvers of free-floating plat-
forms, noteworthy developments have emerged. For instance, an
innovative 3D-printed platform named “Slider" has been intro-
duced [1]. Slider, equipped with eight thrusters, can be precisely
controlled through either motion in one of the 4 cardinal directions
or 2 rotations. Furthermore, [10] presents an extensive characteri-
zation of air bearings platforms while introducing a vision-based
navigation system that takes into account the vibrations caused by
the thrusters.

2.2 Deep Reinforcement Learning for
thrust-based control

Over the past few years, there has been a flourishing utilization
of ML and RL applied to space Guidance Navigation and Control
(GNC) problems. These applications encompass a wide range of
tasks, including: planetary landing [8]; path planning for lunar or
asteroid hopping rovers [26, 33]; spacecraft orbit control within
unknown gravitational fields [31]; and spacecraft map generation
during orbits around small celestial bodies [5]. However, it is worth

Figure 2: Floating platform and target in global reference
frame.
noting that most research employing deep reinforcement learning
for aerospace control tasks shows numerical simulation results
only.

To the best of our knowledge, only one prior work [9], used rein-
forcement learning to guide both simulated and real-world floating
platforms. In this paper, the authors combine DRL as a guidance
policy whose trajectories are fed to a conventional controller to
track. This work provides guidance techniques that successfully
output velocity signals for the simulation and the experimental
facility, achieving comparable performance to that observed during
training.

Our work distinguishes itself from [9] in several key aspects.
Firstly, we introduce a DRL agent capable of directly controlling the
output thrust of the floating platform, eliminating the need for a
separate trajectory tracker scheme. Secondly, our primary focus lies
in delivering a comprehensive framework for training, assessing,
and bench-marking DRL agents and optimal control methods across
a spectrum of environmental conditions. These conditions represent
a significant source of complexity when deploying AI agents on
real systems, especially within the demanding space environment.

3 METHODS
3.1 Problem Formulation
In this paper, we approach the task of guiding a FP’s maneuvers
as a sequential decision-making problem. To facilitate our investi-
gation and demonstrate the practical applicability of our proposed
techniques—from sim to real-world scenarios, we simplify the com-
plex orbital dynamics into a two-dimensional kinematic model. As
illustrated in Figure 2, we use a global reference frame (denoted
𝑊). This allows for consistent and absolute measurements of the
position and heading errors. The framework also allows for the use
of local coordinates whenever considered convenient.

Within this framework the control policy must learn the optimal
sequence of actions by observing state transitions, thereby minimiz-
ing the task-specific error. We define the different tasks as: (i) Go to
pose, starting from a random initial position in the plane, reach and
stop (trying to maintain zero velocity) at the given pose (position
and orientation 𝜃); (ii) Track velocity, track the given velocity vector,
which can in turn be used to follow a trajectory.

For both tasks the control policy is required to minimize the
error metrics derived from the current state observations of the
floating platform and the target. Regarding the “go to pose” task,
the positional error is defined as the Euclidean distance between
the FP’s current position, 𝑝 𝑓 𝑝 = (𝑥 𝑓 𝑝 , 𝑦𝑓 𝑝), and the target position,
𝑝𝑡 = (𝑥𝑡 , 𝑦𝑡), Eq. (1), while the heading error is calculated based on
the difference between the platform’s current orientation 𝜃 𝑓 𝑝 and

Table 1: State task-specific data.

Task f d1 d2 d3 d4
Go to pose 1 Δ𝑥 Δ𝑦 cos(Δ𝜃) sin(Δ𝜃)

Track velocity 2 Δ𝑣𝑥 Δ𝑣𝑦 Δ𝜔𝑧 -

the target heading 𝜃𝑡 , Eq. (2):

𝑒𝑝 = ∥pt − pfp∥2 (1)

𝑒𝜃 = arctan 2
(
sin(𝜃t − 𝜃fp), cos(𝜃t − 𝜃fp)

)
(2)

For the “track velocity” task the angular and linear velocity errors
(e𝑣, e𝜔) are determined by subtracting the FP’s current velocities
(v𝑓 𝑝) from the target velocities (v𝑡), Eq. (3) and (4).

ev = vt − vfp (3)
e𝜔 = 𝝎t − 𝝎fp (4)

In our study, we focus on a lightweight floating platform (FP)
developed at the University of Luxembourg [32]. The system is
defined by a 10-dimensional state space, Eq. 5. At each discrete
time step 𝑡 , the state variables include the FP’s heading (𝜃), its
linear velocities (𝑣𝑥 and 𝑣𝑦), angular velocity (𝜔𝑧), a task flag (f)
indicating the current task, and four additional variables (d1−4) rep-
resenting task-specific data such as distances to the target position
and heading:

𝑠𝑡 = (cos(𝜃), sin(𝜃), 𝑣𝑥 , 𝑣𝑦, 𝜔𝑧 , f, d1, d2, d3, d4)𝑇 . (5)

Task-specific data, written d1−4, is detailed in Table 1, where Δ
denotes the vector norm distance between the variables (such as
position, velocity, or angle) and their respective target values. Here’s
a refined version of the sentence for better clarity and conciseness:

We do not include explicit position in the state 𝑠𝑡 as it is not
necessary for all tasks and helps maintain a smaller observation
space. This configuration of the observation space is intentionally
designed to facilitate the future extension of this work to learn
policies capable of handling multiple tasks simultaneously. For the
control of the platform, our agents use an 8-dimensional action
space that corresponds to a binary activation of 8 “on-off thrusters”.
These share the same pressure line, such that, at every step of the
control loop, the maximum force generated by each thruster is 1

𝑛 N
where 𝑛 is the number of active thrusters. Simply put, if only one
thruster is turned on, it will output 1 Newton, if 2 thrusters are
activated they generate 0.5 N each, etc.

To guide the optimization process for the control policies, an
exponential reward structure was adopted, as after empirical evalu-
ation it was found to yield faster and more accurate convergence.
In particular, Eq. (6) for the “go to pose” task and Eq. (7) for the
“track velocity” task were used:

𝑅𝑝𝑜 = exp
(
−

𝑒𝑝

0.25

)
· 𝑆𝑝 + exp

(
− 𝑒𝜃

0.25

)
· 𝑆𝜃 − 𝑝 (6)

𝑅𝑣 = exp
(
− 𝑒𝑣

0.25

)
· 𝑆𝑝 + exp

(
− 𝑒𝜔

0.25

)
· 𝑆𝜃 − 𝑝 (7)

In this context, errors are quantified as the norm distance from
the specified targets, with 𝑒𝑣 denoting the linear velocity error, and
𝑒𝑝 and 𝑒𝜃 representing the errors in position and orientation, re-
spectively. Scaling coefficients 𝑆𝑝 and 𝑆𝜃 , which adjust the impact

of position and orientation errors, were both set to 0.5 in our exper-
iments. Additionally, 𝑝 sums up to three penalties (𝑝𝑎𝑐𝑡 , 𝑝𝑣𝑒𝑙 , 𝑝𝜔)
designed to discourage excessive thruster activation or reaching
states with elevated linear and angular velocities. Our experimenta-
tion with various penalty configurations led us to adopt a penalty
for thruster activation, Eq. (8) as well as excessive linear (9) and
angular velocities (10). Here, 𝑇 stands for an indicator function
reflecting the on-off states of the thrusters.

𝑝𝑎𝑐𝑡 = 0.3
8∑︁

𝑖=1
𝑇𝑖 (8)

𝑝𝑣𝑒𝑙 = 0.15max(0, |v| − 1) (9)
𝑝𝜔 = 0.15max(0, |𝜔𝑧 | − 1) (10)

3.2 Simulation
Building upon our prior simulator RANS [7], we introduce en-
hancements to enable the platform to perform more complex tasks.
RANS leverage Nvidia’s IsaacSim, specifically relying on OmniIsaac-
Gym [15], a versatile simulator, capable of concurrently running
thousands of environments. In the original RANS framework, only
nominal system and environmental conditions were present. This
hindered the ability of the agents to adapt to non-ideal conditions,
which are usually common when using the real FP systems. To miti-
gate this gap, we introduce RANS v2.0 which includes the following
extensions:

• parameterized rewards and penalties, to allow easy fine-
tuning of the control policies;

• analogue kinematic model in Mujoco [27], to allow easy
evaluation of both traditional and RL-based controllers in a
non-Torch depended environment;

• disturbance generation module, that allows the injection
of:
– Action Noise (AN): a random disturbance force of ±

𝑎𝑛 N applied to every thruster;
– Velocity Noise (VN): ± 𝑣𝑛 m/s added to the state veloc-

ities;
– Uneven Floor (UF):𝑢𝑓 N of force, added to simulate the

floor unevenness, applied to the FP body throughout
the episode, either with a constant direction or through
a sinusoidal generated direction;

– Torque Disturbance (TD): 𝑡𝑑 Nm of torque applied to
the body’s center of mass;

– Random Thrusters Failure (RTF): a zeroing mask over
the output actions to simulate one or multiple thruster
failureswhich remains the same throughout the episode.

RANS v2.0, requires approximately 10 minutes to train an agent
on an RTX 4090. Achieving a throughput of more than 40,000 steps
per second with all disturbances enabled, which is very close to
its previous version. Furthermore, it enables large-scale testing
by swiftly evaluating thousands of initial conditions in seconds,
provides extensive built-in examples and task sets. It offers rich
visualization options, including metric tracking during training
through the WandB API [2], and comprehensive evaluation metrics
presented through tables and plots. The library uses the OpenAI

Gym [3] format to define the RL loop, including the standard nor-
malization of the observation space. Additionally, the integration
with the ROS (Robot Operating System) interface enhances the
versatility of our framework, allowing easy integration and deploy-
ment of the control policies within real-world robotic systems.

3.3 Training Procedure
We reworked the PPO implementation from the RLGames library [14]
as the foundation of our training procedure. This implementation
utilizes GPU acceleration to vectorize observations and actions,
enabling parallelization within the simulator by having both the
simulation and the policy training residing on GPU. Our agents
are designed as actor-critic networks with two hidden layers, each
consisting of 128 units. This makes them light and fast enough to be
ran at high frequency on embedded devices. The hyper-parameters
are listed in Table 4 in the appendix. The agents train in their respec-
tive environments for 2000 epochs (approximately 130M steps). For
more details about the network or the PPO configuration, we invite
the reader to refer to the training configuration files available along
with the code release at https://github.com/elharirymatteo/RANS.

3.4 Benchmark comparison with an Optimal
Controller

In this paper, we aim to provide a benchmark comparison between
deep reinforcement learning and optimal control approaches, LQR
in particular, for addressing the control problem of the floating
platform in various scenarios. Our objective is not to establish the
superiority of one method over the other, but rather to gain insights
into the strengths and weaknesses of each approach under different
environmental conditions and task requirements.

An infinite horizon discrete-time LQR controller [25] is used as a
preliminary comparison with the DRL algorithm to control the FP.
The LQR technique utilizes linearized dynamics to comprehensively
model system behavior, providing optimal solutions with long-term
stability while handling minor disturbances [28]. Their adaptability
and relatively straightforward implementation have resulted in
their adoption for numerous space applications [11, 16, 17]. In the
case of a FP, the position, linear velocities, orientation quaternions,
and angular velocities in the 2D plane are considered state variables
of the system, X𝑖 . Since a FP operates at a relatively high frequency,
a linearized system dynamics, defined as (11)

X𝑘+1 = AX𝑘 + BU𝑘 (11)

is sufficient to predict the control output for incremental steps. The
linearized system matrices, represented by A and B, are the partial
derivatives of the state vector at the final time step, denoted as X𝑘+1,
with respect to the current time step, X𝑘 , and the control input 𝛿U𝑘 ,
respectively. This computation leverages the central differencing
technique, where the effects on the final states are evaluated in
response to deliberate and minor perturbations applied to both the
states and control inputs within the kinematic model simulated
in Mujoco. To better account for the disturbances endured by the
FP, the system matrices are updated at regular intervals. The LQR
controller minimizes the cost function:

𝐽 =

∞∑︁
𝑘=0

XT
𝑘

QX𝑘 + UT
𝑘

RU𝑘

where Q and R are weighting matrices that penalize state errors
and control outputs. Minimizing the aforementioned cost function
delivers an optimal control sequence given by:

U𝑘 = −KX𝑘

where K is the control feedback gain matrix defined by:

K = (R + BTPB)−1BTPA

such that P is a positive definite matrix that is a solution for the
Algebraic Riccati equation, as in:

P = Q + ATPA − ATPBK.

The optimal control output, U𝑘 , is an eight-dimensional array with
real numbers. Note that the control outputs correspond to the ac-
tuation of the eight thrusters on the FP, hence an alternate vector
Ū𝑘 is implemented that is a least squares solution to:

min | | Ū𝑘 − U′
𝑘
| |2

where U′
𝑘
is the normalized vector of U𝑘 with values between 0

and 1. Moreover, for Ū𝑘 = [𝑢1, 𝑢2, ..., 𝑢8], each 𝑢𝑖 for 𝑖 ∈ {1, 2, ..., 8}
represents a binary variable, i.e.,𝑢𝑖 ∈ {0, 1} signifying the actuation
state of each thruster as either “on” or “off”.

3.5 Laboratory Experiment Setup
To validate our approach in a real-world scenario, we conducted
experiments using the physical air bearings platform [32] located
within the ZeroG Laboratory at the University of Luxembourg. This
specific platform floats on an epoxy floor, weighs 5.32 kg and mea-
sures 31 cm in radius and 45 cm in height. It is equipped with a
Raspberry Pi 4 for onboard control and communication. The ZeroG
Lab contains an Optitrack Motion Capture System (MCS) that pre-
cisely tracks the platform’s pose at a frequency of 200 Hz. We derive
linear and angular velocities through simple forward differencing,
that estimate the rate of change of positions and orientations over
consecutive time-steps. Thanks to the relatively high accuracy of
the MCS, and a reasonable averaging window, concerns about noise
sensitivity are negligible. Our experimental setup maintains a con-
nection between a laptop, the MCS, and the FP through a local
network. The laptop serves as the ROS (Robot Operating System)
master node on the network, subscribing to the Optitrack node to
acquire pose data and publishing the actions of the trained agents
at a rate of 5 Hz. This action frequency is deliberately constrained
to prevent damage to the solenoid valves controlling the thrusters
on the floating platform. Figure 3 illustrates the key components
interacting during the simulated training and validation phase (on
the left), and those interacting during the closed-loop control tests
of the real FP system in the Lab (on the right).

Figure 3 illustrates the key components interacting during the
simulated training and validation phase (on the left), and those
interacting during the closed-loop control tests of the real FP system
in the Lab (on the right).

4 EXPERIMENTAL SETUP
Our experiments encompass both numerical simulation-based eval-
uations and real-world experimental validations. For the evaluation,
each trained policy was tested across a diverse set of scenarios de-
fined by various environmental conditions.

https://github.com/elharirymatteo/RANS

Figure 3: Framework Employed for Training and Evaluation: On the left, we depict the agent’s interaction during both training
and evaluation phases with the simulation environments, highlighting the incorporation of disturbances in the loop. On the
right, we illustrate the deployment of the trained policy, while performing open-loop control on the real FP system.

4.1 Performance Metrics
To evaluate the performance of the pose task in numerical simula-
tions, we record 9 metrics: The percentage of time the agent spends
under a given distance threshold during a single trajectory. This
measure is then averaged across all experiments. For instance, PT5
denotes the percentage of time spent under 5 cm, we also record this
for 2 cm (PT2) and 1 cm (PT1). This measure is also applied to the
heading of the agents when performing the pose task. In this case,
OT5 is the percentage of time spent under 5 degrees, this measure
is also done for 2 degrees (OT2), and 1 degrees (OT1). Finally, we
also record the absolute average linear velocity (ALV) and absolute
average angular velocities (AAV). These metrics are compiled per
trajectory, and averaged on the whole of them. This enables us to
estimate how dynamic the agent’s movements are. Furthermore,
we monitor the average number of actions used per step (AAS), to
evaluate the efficiency of the policy.

To evaluate the pose task in the lab, we only use the position
and orientation error, since we do not have enough experiments to
compile more complete statistics. However, we do provide complete
trajectories to better understand the behavior of the RL agent and
LQR controller.

Finally, for the velocity tracking, we chose to apply the con-
trollers on a trajectory tracking task. For that, we wrote a simple
trajectory tracker, that generates a velocity vector to track, based
on a sequence of points to follow. This vector is computed by taking
the closest point that intersect with a circle of radius 𝑟 centered
around the system. This radius, is a look-ahead-distance which
can be tuned to adjust the speed of the tracker. The velocity is
considered fixed for the whole of the trajectory, meaning that the
instructed velocity is not reduced even if there are sharp corners.
This controller is then applied on 3 shapes, a circle, a square and
a infinite. For these trajectories, we measure the error in velocity,
and the averaged trajectory tracking error.

4.2 Real-World Experimental Validations
To validate the real-world applicability of our simulation-trained
control policies, we used the physical floating platform with the
laboratory setup described in section 3.5 to perform a series of
experiments. Each test run, for the same policy, initiated the FP
from different initial conditions, namely position and orientation
within the lab.

5 RESULTS
Simulation-based experiments demonstrate the efficacy of the PPO-
based approach in achieving the defined tasks. The agent exhibits
rapid task completion, stability in control, and adaptation to vari-
ous scenarios. Quantitative metrics and qualitative visualizations
substantiate the agent’s high-performance capabilities.

5.1 Numerical Simulation RL & LQR
In this section, we explore the behaviour of an RL agent trained
to perform the “go to pose” task, and compare it to the LQR con-
troller. We chose the “go to pose” task as it is a representative
example, allowing us to assess the behaviour of different policies
while controlling both the position and the orientation of the FP. To
characterize the controllers’ behaviors we expose them to a range
of disturbances. Neither the RL agents nor the LQR are specifically
adapted to incorporate methods from robust RL or robust optimal
control theory. Yet, it is important to acknowledge that the RL agent
was trained with some domain randomization to learn how to deal
with force disturbances up to 0.25 N. This was decided to allow the
policy to deal with the floor inclination. The chosen range is lower
than in [7] to keep the comparison with the LQR fair. Furthermore,
it let us evaluate generalization above that range. Both of them are
evaluated in MuJoCo, with similarly randomized initial conditions.
In Table 2, each line corresponds to an experiment, with various
disturbances applied, and was compiled using 256 trajectories of
250 steps each.

Table 2: Benchmark of the RL model and LQR controller under disturbances. For PT and OT, higher is better. For ALV, AAV,
and AAS lower is better. Colors in the table indicate the drop in performance relative to their own ideal conditions: blue(0-20%),
green(20-40%), yellow(40-60%), red(60-80%), purple(80-100%). The parameters of the dynamics of the LQR are tuned without
noise or disturbances enabled.

Conditions Controllers Disturbances Metrics
VN UF TD RTF PT5 PT2 PT1 OT5 OT2 OT1 ALV AAV AAS
(m/s) (N) (N·m) (-) (%) (%) (%) (%) (%) (%) (m/s) (rad/s) (-)

Ideal RL - - - - 64 34 6 94 89 73 0.08 0.12 0.29
LQR - - - - 73 41 17 27 11 5 0.07 0.16 0.10

Velocity Noise

RL 0.02 - - - 64 30 7 94 90 72 0.08 0.12 0.31
RL 0.04 - - - 61 21 6 94 89 66 0.09 0.13 0.31
LQR 0.02 - - - 53 21 6 4 1 0 0.09 0.49 0.23
LQR 0.04 - - - 14 3 0 2 1 0 0.15 0.56 0.29

Constant Torque RL - - 0.05 - 63 24 2 94 86 61 0.08 0.12 0.35
LQR - - 0.05 - 57 20 6 3 1 0 0.07 0.43 0.35

Constant Force

RL - 0.20 - - 63 29 7 94 90 74 0.09 0.12 0.30
RL - 0.40 - - 52 19 5 94 89 72 0.09 0.12 0.31
LQR - 0.20 - - 66 17 4 28 12 6 0.07 0.15 0.12
LQR - 0.40 - - 23 0 0 30 13 6 0.08 0.16 0.15

Constant Force & Torque RL - 0.20 0.05 - 62 24 5 94 86 61 0.08 0.12 0.35
LQR - 0.20 0.05 - 13 2 0 3 1 0 0.07 0.44 0.32

Thruster Failures

RL - - - 1 32 15 6 70 55 36 0.10 0.12 0.28
RL - - - 2 15 6 2 45 31 20 0.16 0.15 0.25
LQR - - - 1 40 17 5 20 8 4 0.10 0.21 0.16
LQR - - - 2 12 4 1 11 4 2 0.14 0.28 0.22

First, the two test models are analyzed under ideal conditions
with no disturbances. From the PT metrics, it is evident that the
LQR controller converges faster in position with better accuracy
than the RL, owing to substantially longer durations where the
LQR maintains a position error under 1 cm. We can also see that
the RL controller first aligns its heading with the goal, as it spends
almost all its time under the 5◦ threshold. This is a byproduct of its
reward shaping, which incentivizes the convergence of the heading
as much as the position. Hence, to score the maximum of points,
aligning the heading first is a sound strategy as it is the easiest un-
der ideal conditions. Finally, AAS values show that the LQR is a lot
more fuel efficient in these conditions, with 66% less fuel used than
the RL agent. When considering the Velocity Noise (VN), it is ob-
served that with the lowest noise level, the RL performances remain
unchanged, while the LQR struggles, in particular with attitude
control. With 0.04 m/s of noise, the performance of both controllers
decreases. However, the RL controller is more resilient than the
LQR controller to this kind of disturbance, even though it was not
trained for it. In the interest of brevity, we do not report action noise
value in the table, as we found their effect to be negligible on both
controllers. Furthermore, when examining the Torque Disturbance
(TD) of 0.05N·m, equivalent to 1/6-th of the total torque capacity
of the platform, the performance of both controllers experiences a
noticeable reduction, particularly for the LQR controller. A similar
pattern is observed with the force disturbance (UF), which would
be equivalent to an uneven floor in the lab. In this case, we start by
applying 0.2N of force on the platform, equivalent to 1/5th of its

maximum thrust. In this case, the performance of both controllers
is close to the ideal conditions, with a small performance drop of
the LQR in fine positioning. When doubling it (0.4N), the RL policy
remains close to its baseline, but the LQR performance decreases,
making it unable to maintain positions under the 2.5cm threshold.
Similar behaviours are observed upon the addition of both force
and torque disturbances.

Finally, the thruster failures impact the performance of both
controllers in the same manner. With a single failed thruster, both
controllers perform relatively well, but the addition of a second
thruster failure impedes the controller’s ability to drive the FP to
its defined goals.

Overall, while the LQR controller demonstrates greater efficiency
and precision in position control with our current tuning, it encoun-
ters challenges when subjected to the selected range of disturbances.
In contrast, RL exhibits a lower degree of energy conservation but
offers stronger resilience when subject to a wide range of distur-
bances. It is possible that with a different cost function, better
tuning of its weights, and a robust optimal control approach, the
LQR becomes adept with these disturbances. However, the RL agent
is not using a robust RL approach either, and domain randomiza-
tion was only applied on force disturbances up to 0.25N, which is
less than the disturbances it can overcome. To finely control the
behavior of the agents, a Constrained Markov Decision Process
(CMDP) formulation of the environment, as in [20], can be used.
Here, to automatically find the correct coefficient values for the dif-
ferent components of the reward (which can be expanded to include

Figure 4: Comparison of the RL and LQR controller on two different initial poses in the ZeroG lab. Init 1, denotes the first
initial pose, Init 2 the second initial pose. For the trajectories, the scale of the y-axis is represented as a log value for better
visualization.
the evaluation metrics), behavioral preferences as hard constraints
are imposed using Lagrangian methods, transforming the learning
problem to a constrained optimisation one.

5.2 ZeroG Laboratory
For experiments with the real FP system, we report tests using both
the RL and LQR methods for the “go to pose" task, and tests using
the RL agent only for the “track velocity" task.

5.2.1 Go to pose. The controllers are run on the FP, which is con-
nected to a constant air supply through a tether. This tether applies
some light unknown disturbances such as a small torque and force
to the platform. Moreover, the system velocities are derived from
the optitrack system. The observed velocities include minor noise
and small delays due to network communication.

Figure 4 illustrates the performance of each controller. The first
row shows the trajectories of the FP, and the second row shows
the distance to the goal in position and orientation. The first two
columns have the rough same initial pose: Init1, while the two last
share the same initial pose: Init2.

From the last row, it is evident that the LQR controller converges
faster in position than the RL controller. This aligns well with the
behaviours observed in the simulation benchmark, with an LQR
controller converging faster. However, it is also apparent that the
LQR solution exhibits a minor overshoot. Such an observation is
also in line with the simulation benchmark, as the uneven floor
in the lab likely disrupts the LQR controller by applying a subtle
constant force, preventing it from reaching its simulation baseline
performance. Looking at the top row, we can see that the LQR is

also overshooting a bit. Of course, the behaviour can be adjusted
by modifying the weights associated with the importance of the
error in position in the cost matrix. It is also worth noting that
the LQR controller is sensitive to the weights; smaller weights do
not incentivize the FP motion toward the goal. In comparison to
the simulation, it was deemed necessary to alter the weights of
the LQR controller to yield a more aggressive approach to achieve
satisfying performances. As for the RL agent, it is noticeable that the
FP initially aligns its heading and then gradually converges toward
the goal. Consistently with the results from the simulation, the RL
controller is significantly more accurate in terms of heading while
achieving a position accuracy similar to that of the LQR controller.
Overall, both controllers performed well in the lab, reaching their
expected performances.

5.2.2 Track velocity. In the tests performed for this task in the lab,
the objective is to assess the simulation-trained policy ability to
adhere to a set of predetermined target velocities. Since the LQR
model relies on both position and velocity states as input, while
the RL agent only requires velocity, we opted to present the RL
policy results for this specific task. Both numerical-simulation and
lab tests are displayed to validate the sim-to-real transfer.

Similar to the “go to pose” experiments, the FP was subjected to
unmodeled disturbances affecting both linear and angular motion.
An additional challenge in these tests was the accurate estimation of
velocities, affected by slight measurement noise and communication
delays. The pre-generated trajectories to be tracked by the policy
were designed to test the FP’s response accuracy and agility.

Figure 5: RL agent performing velocity tracking in simulated
(bottom) and lab (top) environments.

Figure 5 illustrates the target trajectory and the FP’s position
for the circle, square and infinite shapes. It is clearly visible that
the hardest task was to follow a squared-shaped trajectory. This
is due to the sharp turns that require precise maneuvering and
acceleration adjustments, which could be induced by reducing the
look-ahead-distance and target velocity of the tracking when close
to corners. The performance metric used is the linear velocity error
𝑒𝑣 expressed as 𝜇 ± 𝜎 , where 𝜇 is the mean and 𝜎 is the standard
deviation during the test duration. Table 3 reveals that the lab envi-
ronment generally presents higher velocity errors compared to the
simulation environment, particularly notable in the square shape
with a lab error of 0.07 ± 0.05 m/s versus a sim error of 0.05 ± 0.08
m/s, the difficulty of real-world transfer. For the infinite trajectory,
we observed a slight overshoot in the path’s lower regions, caused
by the irregularities in the epoxy floor, which are significant in that
area of the laboratory, affecting the FP’s motion. This can also be
seen on the square, and to less of a degree on the circle. In our case,
there is a slope pulling free-floating objects towards negative y. As
of now, the ZeroG Laboratory has not been fully characterized. As
such it is difficult to precisely quantify the intrinsic disturbances
affecting the platform. Hence, reproducing these experiments in
other labs may yield different results. However, we are confident
that they should remain comparable.

6 CONCLUSIONS
This study presents a robust framework for the 2D control of a FP
using deep reinforcement learning techniques. The enhancements
to our simulator extend its applicability, enabling the training of
agents for complex tasks. The demonstrated effectiveness of the
PPO algorithm, with seamless transfer behavior from the simulation
to the FP system, highlights its potential for autonomous navigation
in space. Furthermore, our comparative analysis with traditional
optimal control algorithms reveals the superior performance of our
method in the presence of unpredictable stochastic disturbances. In
the future, we aim to explore the efficacy of complex architectures
such as LSTMs or Transformers to see if they can cope better with
more disturbances and in particular a greater number of actuators
failure.

Shape Lab Error (𝜇 ± 𝜎) [m/s] Sim Error (𝜇 ± 𝜎) [m/s]
circle 0.03 ± 0.02 0.01 ± 0.01
infinite 0.04 ± 0.03 0.01 ± 0.01
square 0.07 ± 0.05 0.05 ± 0.08

Table 3: Comparison of Velocity Errors Between Lab and Sim
Environments for the track velocity task. All the trajectories
are tracked at 0.2 m/s.

Regarding the transferability of our techniques to more complex
3D orbital dynamic models, we are currently working on a 3D ver-
sion of RANS to assess how well the deep reinforcement learning
methods used in this study scale to comprehensive 6 DoF scenarios.
To enable real-time policy execution on space-grade hardware, we
have deliberately chosen to keep the neural network architectures
compact (128x128), such that they meet the stringent computational
constraints of spacecraft. Currently, no facility offers a Hardware-
in-the-Loop testing environment for complete 6 DoF navigation
scenarios. However, we foresee the possibility of testing our poli-
cies incrementally, adapting the training environment to specific
subtasks, such as reaction-wheel-based attitude control, for which
specialized test benches already exist.

Additionally, we aim to broaden our framework to train agents
capable of walking and jumping in microgravity using a combi-
nation of leg motion and thrusters, expanding the set of available
sensors and actuators.

ACKNOWLEDGMENTS
Work supported by the European Union’s Horizon 2020 research
and innovation program under grant No. 101096487.

REFERENCES
[1] A. Banerjee, S. Satpute, C. Kanellakis, I. Tevetzidis, J. Haluka, P. Bodin, and G.

Nikolakopoulos. 2022. On the design, modeling and experimental verification
of a floating satellite platform. IEEE Robotics and Automation Letters 7 (2022),
1364–1371. Issue 2. https://doi.org/10.1109/lra.2021.3140134

[2] Lukas Biewald. 2020. Experiment Tracking with Weights and Biases. $https:
//www.wandb.com/$ Software available from wandb.com.

[3] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schul-
man, Jie Tang, and Wojciech Zaremba. 2016. Openai gym.

[4] Yuxue Cao, Shengjie Wang, Xiang Zheng, Wenke Ma, Xinru Xie, and Lei Liu.
2023. Reinforcement learning with prior policy guidance for motion planning of
dual-arm free-floating space robot. Aerospace Science and Technology 136 (2023),
108098.

[5] David M. Chan and Ali-akbar Agha-mohammadi. 2019. Autonomous Imaging
and Mapping of Small Bodies Using Deep Reinforcement Learning. , 12 pages.
https://doi.org/10.1109/AERO.2019.8742147

[6] G. Curzi, D.Modenini, and P. Tortora. 2020. Large constellations of small satellites:
a survey of near future challenges and missions. Aerospace 7 (2020), 133. Issue 9.
https://doi.org/10.3390/aerospace7090133

[7] Matteo El-Hariry, Antoine Richard, and Miguel Olivares-Mendez. 2023. RANS:
Highly-Parallelised Simulator for Reinforcement learning based Autonomous
Navigating Spacecrafts.

[8] Brian Gaudet, Richard Linares, and Roberto Furfaro. 2020. Deep reinforcement
learning for six degree-of-freedom planetary landing. Advances in Space Research
65, 7 (2020), 1723–1741.

[9] K. Hovell and S. Ulrich. 2020. On deep reinforcement learning for spacecraft
guidance. https://doi.org/10.2514/6.2020-1600

[10] Z. Huang, W. Zhang, T. Chen, H. Wen, and D. Jin. 2022. Characterizing an
air-bearing testbed for simulating spacecraft dynamics and control. Aerospace 9
(2022), 246. Issue 5. https://doi.org/10.3390/aerospace9050246

[11] Mohsen Khosravi, Hossein Azarinfar, and Kiomars Sabzevari. 2024. Design
of infinite horizon LQR controller for discrete delay systems in satellite orbit
control: A predictive controller and reduction method approach. Heliyon 10, 2
(2024).

https://doi.org/10.1109/lra.2021.3140134
$https://www.wandb.com/$
$https://www.wandb.com/$
https://doi.org/10.1109/AERO.2019.8742147
https://doi.org/10.3390/aerospace7090133
https://doi.org/10.2514/6.2020-1600
https://doi.org/10.3390/aerospace9050246

[12] J. Kopacz, R. Herschitz, and J. Roney. 2020. Small satellites an overview and
assessment. Acta Astronautica 170 (2020), 93–105. https://doi.org/10.1016/j.
actaastro.2020.01.034

[13] S Kwok-Choon, K Buchala, B Blackwell, S Lopresti, M Wilde, and T Go. 2018.
Design, fabrication, and preliminary testing of air-bearing test vehicles for the
study of autonomous satellite maneuvers. , 10–11 pages.

[14] Denys Makoviichuk and Viktor Makoviychuk. 2021. rl-games: A High-
performance Framework for Reinforcement Learning. https://github.com/
Denys88/rl_games

[15] Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier
Storey, Miles Macklin, David Hoeller, Nikita Rudin, Arthur Allshire, Ankur
Handa, et al. 2021. Isaac gym: High performance gpu-based physics simulation
for robot learning.

[16] Vivek Muralidharan, Mohatashem Reyaz Makhdoomi, Kuldeep Rambhai Barad,
Lina María Amaya-Mejía, Kathleen C Howell, Carol Martinez, and Miguel
Olivares-Mendez. 2023. Rendezvous in cislunar halo orbits: Hardware-in-the-
loop simulation with coupled orbit and attitude dynamics. Acta Astronautica 211
(2023), 556–573.

[17] Vivek Muralidharan, Mohatashem-Reyaz Makhdoomi, Augustinas Zinys, Bro-
nislovas Razgus, Marius Klimavicius, Miguel Olivares-Mendez, and Carol Mar-
tinez. 2024. On-ground validation of orbital GNC: Visual navigation assessment
in robotic testbed facility. Astrodynamics (2024).

[18] Cristóbal Nieto-Peroy, Giovanni Palmerini, Elcio Jeronimo de Oliveira, Paolo
Gasbarri, Marco Sabatini, and Mathias Milz. 2021. Simulation of Spacecraft
Formation Maneuvers by means of Floating Platforms. , 10 pages. https:
//doi.org/10.1109/AERO50100.2021.9438537

[19] M. B. Quadrelli, L. J. Wood, J. E. Riedel, M. McHenry, M. Aung, L. A. Cangahuala,
R. Volpe, P. Beauchamp, and J. A. Cutts. 2015. Guidance, navigation, and control
technology assessment for future planetary sciencemissions. Journal of Guidance,
Control, and Dynamics 38 (2015), 1165–1186. Issue 7. https://doi.org/10.2514/1.
g000525

[20] Julien Roy, Roger Girgis, Joshua Romoff, Pierre-Luc Bacon, and Christopher Pal.
2021. Direct behavior specification via constrained reinforcement learning. arXiv
preprint arXiv:2112.12228 (2021).

[21] Tomasz Rybus and Karol Seweryn. 2016. Planar air-bearing microgravity simu-
lators: Review of applications, existing solutions and design parameters. Acta
Astronautica 120 (2016), 239–259.

[22] M. Sabatini, P. Gasbarri, and G. B. Palmerini. 2017. Coordinated control of a
space manipulator tested by means of an air bearing free floating platform. Acta
Astronautica 139 (2017), 296–305. https://doi.org/10.1016/j.actaastro.2017.07.015

[23] L. Santaguida and Z. H. Zhu. 2023. Development of air-bearing microgravity
testbed for autonomous spacecraft rendezvous and robotic capture control of a
free-floating target. Acta Astronautica 203 (2023), 319–328. https://doi.org/10.
1016/j.actaastro.2022.11.056

[24] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal policy optimization algorithms.

[25] Robert F Stengel. 1994. Optimal control and estimation.
[26] T. Tanaka, M. Cescon, and H. A. Malki. 2021. Linear quadratic tracking with

reinforcement learning based reference trajectory optimization for the lunar
hopper in simulated environment. IEEE Access 9 (2021), 162973–162983. https:
//doi.org/10.1109/access.2021.3134592

[27] Emanuel Todorov, Tom Erez, and Yuval Tassa. 2012. MuJoCo: A physics engine
for model-based control. , 5026-5033 pages. https://doi.org/10.1109/IROS.2012.
6386109

[28] Elisa Sara Varghese, Anju K Vincent, and V Bagyaveereswaran. 2017. Optimal
control of inverted pendulum system using PID controller, LQR and MPC. In IOP
Conference Series: Materials Science and Engineering, Vol. 263. IOP Publishing,
052007.

[29] S. Vyas, M. Zwick, and M. Olivares-Mendez. 2022. Trajectory optimization
and following for a three degrees of freedom overactuated floating platform.
https://doi.org/10.1109/iros47612.2022.9981294

[30] Jonathan D Wapman, David C Sternberg, Kevin Lo, Michael Wang, Laura Jones-
Wilson, and Swati Mohan. 2021. Jet Propulsion Laboratory small satellite dy-
namics testbed planar air-bearing propulsion system characterization. Journal
of Spacecraft and Rockets 58, 4 (2021), 954–971.

[31] Stefan Willis, Dario Izzo, and Daniel Hennes. 2016. Reinforcement Learning for
Spacecraft Maneuvering Near Small Bodies. https://api.semanticscholar.org/
CorpusID:150378389

[32] Bariş Can Yalçin, Carol Martinez, Sofía Coloma, Ernest Skrzypczyk, andMiguel A.
Olivares-Mendez. 2023. Lightweight Floating Platform for Ground-Based Em-
ulation of On-Orbit Scenarios. IEEE Access 11 (2023), 94575–94588. https:
//doi.org/10.1109/ACCESS.2023.3311202

[33] X. Yu, P. Wang, and Z. Zhang. 2021. Learning-based end-to-end path planning
for lunar rovers with safety constraints. Sensors 21 (2021), 796. Issue 3. https:
//doi.org/10.3390/s21030796

APPENDIX
A PPO HYPERPARAMETERS
Table 4 outlines the key parameters used in the adapted version of
the Proximal Policy Optimization (PPO) algorithm for training our
models.

Parameter Value
Algorithm PPO

Network Type Actor-Critic MLP
Separate Networks True

MLP Units [128, 128]
Activation Function tanh

Initializer Identity
Regularizer None

Learning Rate 1𝑒 − 4
Gamma (𝛾) 0.99
Tau (𝜏) 0.95

Entropy Coefficient 0.0
Horizon Length 16
Minibatch Size 8192
Mini Epochs 8

Critic Coefficient 0.5
Gradient Clipping Norm 1.0

KL Threshold 0.016
Critic Coefficient 0.5
Table 4: PPO Training Parameters

B LQR PARAMETERS
Table 5 summarizes the parameters of the Discrete LQR Controller
used. The controller is made planar compatible, indicating a restric-
tion to the 2D plane.

Parameter Value
Name 𝐿𝑄𝑅

Q (State cost matrix) [0.0001, 1e-05, 100, 100, 1e-06, 1e-06, 1]
R (Control cost matrix) [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01]
W (Disturbance weight matrix) [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1]
Make planar compatible Yes
Control type LQR
Table 5: Parameters for the Discrete LQR Controller

https://doi.org/10.1016/j.actaastro.2020.01.034
https://doi.org/10.1016/j.actaastro.2020.01.034
https://github.com/Denys88/rl_games
https://github.com/Denys88/rl_games
https://doi.org/10.1109/AERO50100.2021.9438537
https://doi.org/10.1109/AERO50100.2021.9438537
https://doi.org/10.2514/1.g000525
https://doi.org/10.2514/1.g000525
https://doi.org/10.1016/j.actaastro.2017.07.015
https://doi.org/10.1016/j.actaastro.2022.11.056
https://doi.org/10.1016/j.actaastro.2022.11.056
https://doi.org/10.1109/access.2021.3134592
https://doi.org/10.1109/access.2021.3134592
https://doi.org/10.1109/IROS.2012.6386109
https://doi.org/10.1109/IROS.2012.6386109
https://doi.org/10.1109/iros47612.2022.9981294
https://api.semanticscholar.org/CorpusID:150378389
https://api.semanticscholar.org/CorpusID:150378389
https://doi.org/10.1109/ACCESS.2023.3311202
https://doi.org/10.1109/ACCESS.2023.3311202
https://doi.org/10.3390/s21030796
https://doi.org/10.3390/s21030796

	Abstract
	1 Introduction
	2 Related Work
	2.1 Floating Platforms control
	2.2 Deep Reinforcement Learning for thrust-based control

	3 Methods
	3.1 Problem Formulation
	3.2 Simulation
	3.3 Training Procedure
	3.4 Benchmark comparison with an Optimal Controller
	3.5 Laboratory Experiment Setup

	4 Experimental Setup
	4.1 Performance Metrics
	4.2 Real-World Experimental Validations

	5 Results
	5.1 Numerical Simulation RL & LQR
	5.2 ZeroG Laboratory

	6 Conclusions
	Acknowledgments
	References
	A PPO Hyperparameters
	B LQR parameters

