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ABSTRACT
Large-scale space structures have taken center stage as the future
of space exploration, paving the way for ambitious endeavors like
sprawling solar power stations, intricate telescopes, and giant space
stations. This program lies not in manual assembly, but in empow-
ering space robots to autonomously build these structures through
plans provided by dedicated on-orbit assembly planning algorithms.

In this paper we describe an approach to large-scale space struc-
tures assembly frameworks, while keeping in mind the many bene-
fits associated to the usage of autonomous crawling mobile robots.

We thus describe an assembly approach and model on which
we are developing our research. Initially, all the building elements
(beams and nodes) are stored in the payload fairing. These are
deployed bit by bit building the structure on which the robots them-
selves will evolve until reaching the final configuration. We repre-
sent the assembling problem as an automated planning instance,
where several structural constraints dictate the actions available
for execution. The automated planner algorithm provides the steps
required to achieve the final, deployed structure.

We implemented a first version of the planner that provides an
assembly plan, i.e. a sequence of actions to move the elements from
the payload fairing to the deployed structure.

This model helps to illustrate the feasibility of the approach and
the benefits of having AI tools for autonomous assembling robots
in space.
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1 INTRODUCTION
Deployable techniques are commonly accepted by the engineer-
ing community as the conventional technique for fielding space
systems. However, their complexity grows with the size of the
structures and is limited by rocket capacity. It is widely accepted
that, as the size of space structures increases, the complexity of
deployments will become too great and the risk of failure will in-
crease [2, 5, 17]. On-orbit assembly offers a more efficient launch
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process, a safer assembly process, and the added benefit of reusing
autonomous mobile space robot systems for repairs, expansion, in-
spection, and maintenance of large space structures. This approach
enables the construction of truly massive structures. [17, 34].

In comparison with deployable techniques, on-orbit assembly
using robots that crawl along the truss offers a number of advan-
tages in terms of resilience and adaptability. Crawling robots can
navigate around unexpected obstacles and environmental changes,
which is a significant improvement over the rigid folding sequence
required by foldable structures [21]. Their modular design allows
collaborative work on different structure sections simultaneously,
increasing efficiency and providing redundancy in the event of
robot failure.

Autonomous mobile robots are well-suited for on-orbit repair
and maintenance tasks due to their mobility and intelligence. They
can access and repair areas inaccessible to astronauts or fixed tools,
reducing human risk and dependency. Equipped with sensors and
computing capabilities, robots can diagnose problems, plan repairs
and learn from experience, minimizing reliance on ground control.
Furthermore, the capability to carry out repairs swiftly and effec-
tively minimizes the downtime of critical space infrastructure[1].

Efficient assembly planning should consider a number of factors:
payload design and robotic system should be integrated as a sin-
gle, complete system because they are interdependent [21]. Virtual
reality technology allows people to interact with the assembly pro-
cess virtually, allowing for more efficient planning of the assembly
process [23, 26], but this approach is more suitable for small struc-
tures where the plan is synthesized by human expert operators.
Auction algorithms based on consensus bundle algorithms are used
to solve complex on-orbit assembly task assignments, and local
consensus algorithms are proposed for dynamic tasks requiring
real-time reassignments [32].

Several approaches have been proposed for automated plan-
ning [12] in space assembly. For large-scale assembly, automated
planning is used to coordinate multiple, heterogeneous robots.[29].

Path planning for fleets of assembling robots has been considered
by works on “Equilibrium Shaping” [13], a method to produce a
swarm in which each agent is preassigned to a particular place
in the final formation, and where a a global swarm behavior is
achieved without robot communication, using neighbor sensing to
avoid collisions.

Foust et al., proposed a decentralized auction algorithm with
a trajectory planner, implementing model predictive control us-
ing sequential convex programming [6]. This distributed guidance
and control scheme aims at combining a heterogeneous swarm of
component satellites into a large satellite structure.



Rodríguez et al. [27] generate assembly and reconfiguration plans
for modular structures by calling a motion planner using a sym-
bolic representation of preconditions and logical constraints in
PDDL. This results in a sequence of high-level actions that can be
autonomously executed by a robot. The planner uses breadth-first
search to find an optimal sequence of actions, even if it uses heuris-
tics to select preferred paths, and limits the branching factor in
order to speed up the search. In this architecture, as in the present
work, each robot is an autonomous agent consisting of a planning
layer that determines how to achieve high-level goals.

CPGA – Continuous path generation algorithm – is a variant
of the branch-and-bound algorithm and the modified ant colony
algorithm that has been used in [28] for the on-orbit assembly
path planning process. The major objective of CPGA is to converge
rapidly to a local minimum solution of the problem to reduce the
calculation cost and optimization time.

Martínez-Moritz et al. [20] use an automated task planner to plan
the pick up, move and place operations for mirror tiles in a large
spatial structure. The state space is searched using a variant of the
depth-first search algorithm that prunes dead-end states. Execution
is thenmonitored to ensure that certain physical constraints are met
(e.g., that the trajectory avoids collisions or exceeds the physical
limits of the equipment).

We adopt an automated planning approach that generates an or-
dered sequence of actions for the robots to build the final structure.
In order to both avoid dead-end states, and to perform an efficacious
search, we use a heuristic search algorithm in the space of the struc-
ture configurations. The planner software includes connectivity
constraints, communication between elements, and reachability of
components throughout the assembly process.

Figure 1: System components: beams, node, crawling robot,
spacecraft

2 USE CASE
On-orbit assembly of large structures holds relevance for future
missions such as solar power stations, orbital stations, or very
large antennas for communication needs. The robotization of these
assembly operations becomes all the more accessible as the tech-
nological maturity of standard interfaces advances [18, 21]. These
interfaces enable couple mechanically as well as transmit electrical
power, data and thermal control [33]. This technology has been
considered in particular for the assembly of a large optical surface
composed of identical tiles using crawling robots [4]. In this paper,

we propose to study the prospects offered by crawling robots for the
assembly of large structures composed of heterogeneous elements
equipped of these interfaces.

To evaluate our approach, and the planning algorithm described
in section 4, we considered the recent on-orbit demonstration
DOLCE conducted by Caltech University [10]. The DOLCE (Devel-
opment of the Deployable on-Orbit ultraLight Composite Experi-
ment) is a project that aims to advance technology for space solar
power. It focuses on developing lightweight composite materials for
deployable structures in space. The ultimate goal is to enable more
efficient and cost-effective deployment of solar power systems in
orbit. The designed deployed structures collect solar energy and
directly convert it in-situ into microwaves for transmission to the
ground. This feature simplifies constraints on the support structure
and, in particular, the level of electrical power to be transmitted via
standard interfaces. We consider the assembly of a support struc-
ture that connects a group of nodes equipped with DOLCE modules
in a hexagonal pattern. By scaling the current demonstrators, we
can estimate that the volume required to hold an active triangular
equilateral solar panel of two meters would be a cylinder with a
diameter of 0.25 m and a height of 0.55 m. Adding three Hotdock
connectors [16] to the base of this module to connect it to the struc-
ture, increases the total height of one node to 0.7 m. The resulting
model and its components are shown in Figure 1.

Figure 2: Use case scenario in stacked configuration

Figure 3: Use case scenario in deployed configuration



To connect these nodes to each other and to the supporting
satellite, composite lattice beams fitted with Hotdock connectors
at their ends can be used. In this study, two lengths of beams are
required: 3 m beams for the first nodes connected to the satellite
and 2 m beams between each node. The diameter of the beams is
estimated at 0.25 m.

For the crawling robots, a design similar to theMIRROR project [4]
can be used, i.e. a torso equipped with two arms with seven degrees
of freedom. The end of each arm is equipped with grippers to allow
locomotion at any point of the structure, while the torso can carry
either a beam or a node deposited by one of the arms (cf. Figure 6).
Finally, for the satellite, we chose the same space-bus as the one
used in the H2020 PULSAR project [15], with the payload replaced
by a truss structure fitted with 6 Hotdocks.

With an arrangement of 2 layers of nodes and 2 layers of beams
in a triangular pattern (cf. Figure 2), an assembly of 300 beams and
210 nodes can be placed under the fairing of the Ariane 6 launcher,
while complying with mass and volume constraints (see Ariane 6
User’s Manual). This arrangement constitutes an initial operating
point that can be improved by optimizing the mass of the beams
and using a dedicated knapsack problem solver. When deployed,
these elements give a total surface area of 42 m in diameter. The
deployed structure is depicted in Figure 3.

3 SYSTEM MODELING
The structure described in the previous section, made of different
interconnected elements (nodes and beams), and being assembled
by crawling robots, is then modeled as a graph on which planning
agents evolve, performing assembly plans.

3.1 Structure modeling
Lattice structures are an effective solution for creating large-scale
infrastructures with a good mass-rigidity ratio. The modularity [14]
of this type of structure also facilitates reconfiguration operations
during maintenance, making them highly suitable for robotic as-
sembly. These structures are made by assembling a set of beams
according to a specific geometry that provides rigidity.

The proposed concept involves planning tasks for an assembly
consisting of truss beams with standard interfaces at their ends and
attachment nodes also equipped with standard interfaces, support-
ing a payload such as a solar panel or deployable antenna. This
paper only considers flat structures for deployment, but the concept
can be easily extended to three dimensions.

The configuration of the state of the system during the assembly
operation can be described in the form of a graph, where the nodes
represent the centers of mass (CoM) of the bodies and the edges
the mechanical links that connect them. Figure 4 shows the graph
of a simple structure arranged in a hexagonal lattice. The blue and
orange points represent respectively the nodes associated with the
CoM of the beams and the fixing nodes. The green and red points
represent the nodes associated with the CoM of the standard in-
terfaces (red active interfaces, green passive interfaces). The gray
segments correspond to the edges representing the rigid fasten-
ers, and the green segments the removable fasteners between the
connectors.

Figure 4: Graph of a deployed planar hexagonal structure

This graph representation also applies to the initial geometric
configuration of the structural elements. Figure 5 shows the ar-
rangement of the structural elements prior to deployment, taking
into account the space constraints and mass distribution under the
launcher fairing. To optimize the storage of these elements, we
have chosen a triangular pattern, and a layered distribution.

Figure 5: Stacked configuration in a triangular pattern of the
structure in Figure 4

3.2 Agent
Crawling robots are systems that adhere to or grasp the structure
and move around. Here we assume that the robot does not need
any special element to anchor itself to the structure, similar to
the Skyworker developed at Carnegie Mellon University [31]. This
concept enables small robotic systems to move structural elements
within a large work volume. However, the progress of the struc-
tural assembly process directly affects the range of possible actions.
Elements that are movable and the truss beams along which the
agents can crawl evolve dynamically depending on the structure
being assembled. Based on the current state of the system, it is
then necessary to determine the paths that agents can take and
the elements that can be manipulated, in order to identify possible
actions.

https://www.arianespace.com/wp-content/uploads/2021/03/Mua-6_Issue-2_Revision-0_March-2021.pdf
https://www.arianespace.com/wp-content/uploads/2021/03/Mua-6_Issue-2_Revision-0_March-2021.pdf


Figure 6: Graph of the paths and reachable positions for a
crawling robot moving a beam from the top layer

In Figure 6 is shown the graph of the paths going trough the
reachable elements of the payload. Green points represent the reach-
able positions, the edges of the graph are the paths that the crawling
robot can take.

4 NOMINAL ASSEMBLY PLAN COMPUTATION
Automated planning (sometimes called AI planning) [12] is a field
of artificial intelligence concerned with automatically finding a
sequence of steps that can achieve a specific goal in a particular en-
vironment. It involves using algorithms to search through possible
sequences of actions to find one that leads to the desired outcome.

Automated planning has been used in several robotics scenarios,
including space exploration [9, 17, 34] and logistics industrial robot-
ics [3, 19], mainly representing an effective approach to autonomous
behavior, integrating action selection and sensors responses [11].

4.1 Planning problem modeling and solving
A planning agent uses the model of the environment and the system
to reason about possible courses of action and how they will affect
the state of the world.

In this work we embrace this approach to autonomous behavior.
We propose a domain-specific deterministic planner for assembling
large-scale space structures. Each state is a graph representing the
lattice structure, labeling nodes with their capacity to host new
connections, their structural characteristics, and their distance from
the center of the structure. From this representation, we can also
represent the available paths and reachable elements. Depending
on which element is deemed reachable, structural constraints and
applicable actions are dynamically updated during the search for a
solution plan, since adding an element to the structure may allow
to move to a new position and thus reach other nodes. Removing
an element may result in certain paths being blocked.

In our implementation of the search algorithm, we adopt a lazy
representation of the search nodes, trading memory for time over-
head. We keep in memory the sequence of actions 𝜋 leading to
the current state 𝑠 , and we build the correspondent graph of the
structure by simply progressing the root search node 𝑠0 through the

plan 𝜋 . A search node thus represents a state 𝑠 and corresponds to
the sequence of actions 𝜋 from the initial state 𝑠0 to 𝑠 . This means
that states are not computed explicitly, but represented implicitly
in the plan prefix 𝜋 .

Algorithm 1 Search Algorithm

1: function Search(𝑠𝑡𝑎𝑟𝑡 , 𝑔𝑜𝑎𝑙 )
2: 𝑜𝑝𝑒𝑛𝐿𝑖𝑠𝑡 ← priority queue containing 𝑠𝑡𝑎𝑟𝑡 with priority 0
3: 𝑐𝑙𝑜𝑠𝑒𝑑𝐿𝑖𝑠𝑡 ← empty map
4: ℎ_𝑖𝑛𝑖𝑡 ← ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 (𝑠𝑡𝑎𝑟𝑡)
5: while 𝑜𝑝𝑒𝑛𝐿𝑖𝑠𝑡 is not empty do
6: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝑜𝑝𝑒𝑛𝐿𝑖𝑠𝑡 .𝑝𝑜𝑝 ()
7: 𝑐𝑜𝑠𝑡 ← 𝑐𝑙𝑜𝑠𝑒𝑑𝐿𝑖𝑠𝑡 [𝑐𝑢𝑟𝑟𝑒𝑛𝑡]
8: if 𝑐𝑜𝑠𝑡 < 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑝𝑙𝑎𝑛𝐶𝑜𝑠𝑡 then
9: continue
10: end if
11: if 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is 𝑔𝑜𝑎𝑙 then
12: return extract_solution(𝑐𝑢𝑟𝑟𝑒𝑛𝑡 )
13: end if
14: 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠 ← 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡)
15: for each 𝑜𝑝 in 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠 do
16: 𝑐ℎ𝑖𝑙𝑑 ← 𝑜𝑝.𝑎𝑝𝑝𝑙𝑦 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡)
17: if (𝑐ℎ𝑖𝑙𝑑 ∉ 𝑐𝑙𝑜𝑠𝑒𝑑𝐿𝑖𝑠𝑡 or

𝑐ℎ𝑖𝑙𝑑.𝑝𝑙𝑎𝑛𝐶𝑜𝑠𝑡 < 𝑐𝑙𝑜𝑠𝑒𝑑𝐿𝑖𝑠𝑡 [𝑐ℎ𝑖𝑙𝑑]) then
18: 𝑐𝑙𝑜𝑠𝑒𝑑𝐿𝑖𝑠𝑡 [𝑐ℎ𝑖𝑙𝑑] ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡

19: Add 𝑐ℎ𝑖𝑙𝑑 to 𝑜𝑝𝑒𝑛𝐿𝑖𝑠𝑡 with priority being the plan cost
20: end if
21: end for
22: end while
23: return Failure: No plan found
24:
25: function extract_solution(𝑐𝑢𝑟𝑟𝑒𝑛𝑡 )
26: 𝑝𝑙𝑎𝑛 ← empty list
27: while 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 do
28: 𝑝𝑙𝑎𝑛 ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑎𝑐𝑡𝑖𝑜𝑛

29: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑝𝑎𝑟𝑒𝑛𝑡

30: 𝑝𝑙𝑎𝑛.𝑟𝑒𝑣𝑒𝑟𝑠𝑒 ()
31: end while
32: return 𝑝𝑙𝑎𝑛

The planner performs a best first search based on states ordered
by a priority value correspondent to their plan cost value, calculated
by adding the cost of reaching the current state from the initial
situations plus the heuristic value for reaching the goal situation.
The heuristic is calculated as the sum of the distances of the stacked
elements from the base of the structure, considering the beams that
can be moved, plus the distance needed to reach the remaining
target deployed positions. This approximation simplifies the pro-
cess of shortest path computation in the graph structure, which
would require performing an A* search or a Dijkstra algorithm for
each applicable action. At equivalent plan costs, nodes with lower
heuristic value are preferred.

Algorithm 1 shows the A* search performed. It follows the usual
algorithm, with a couple of variations. After initializing the open
and closed lists, at line 6 the node with the lowest priority value is
taken from the open list. We only expand the node if its associated



Instance # Beams # Nodes Time (s) Plan length
Small 3 3 0.02 6
Medium 24 18 5.8 42
Large 66 48 160 114
Huge 300 210 16.000 510

Table 1: Planning time and assembly plan length in increas-
ing size instances of the large-scale assembly problem

value is the lowest cost known for this state (lines 8-9). Otherwise,
it means that we’ve already found a cheaper path after creating this
node (line 18) and hence can disregard it. If the state corresponding
to the current node is the desired goal situation, the solution plan is
returned at line 12 by calling the function extract_solution. At
line 14 we perform a delayed generation of the applicable operators,
because this planning problem has a very high branching factor:
we then prefer to evaluate the list of applicable actions, and the suc-
cessor states, only when necessary. Function generateOperators
does exactly that: it checks which are the movable beams and nodes,
which paths are available to the mobile agents, and generates the
list of applicable operators for the current state. We expand child
nodes when the state has not been seen before, or when we find a
cheaper path to the child state than before (line 17).

Returned plans are a sequence of elements displacements, from
the initial stacked position in the nose cone to the final deployed
configuration. These plans are intended to be generated off-line,
with the assembly plan uploaded while on orbit.

These plans are intended to be generated off-line, with the assem-
bly plan uploaded while on orbit. Even though, due to the elevate
branching factor of the problem (between 103 and 104 for the big
instances), sub-optimal search can be challenging.

Table 1 below shows the results for our planner on benchmarks
of increasing size, in order to evaluate the order of magnitude of
the instances being solved by a single agent. Tests have been run
on a Quad-Core Intel Xeon CPU @ 3.60GHz with 16GB RAM. The
length of the plans corresponds to the total number of elements to
be displaced, and hence, to the size of the structure. It is clear from
these results that elaborating plans for medium or large structures
is still feasible from the time point of view, and the memory point
of view. Bigger instances terminate in time out (with a time limit
set to 20.000 s), but the size of the nodes in the open list requires
also additional memory in these cases.

Said that, bigger instances of more than 800-900 elements are
unrealistic because the number of elements would not fit stacked in
the nose cone of the current launchers, e.g. Ariane 6, and multiple
rockets deliver payloads would be assembled sequentially.

In our architecture, we contemplate generating solutions see-
ing each robot as an autonomous agent, executing an assembly
plan. Splitting a “Huge” instance of the problem among six “Large”
planning agent instances is totally scalable. However, in this first
development phase, we implemented this solution with the agents
having secluded activities, each being able to reach a predetermined
portion of the structure. This separation of the robot activities is
sub-optimal, and the extension of this approach to a decentralized
architecture featuring collaborative robots is discussed below in
the Conclusion section.

5 CONCLUSION
We have presented an approach to model large-scale space struc-
tures, and to generate an on-orbit assembly plan, focusing on the
usage of AI planning for autonomous mobile crawling robots. The
modeling is specific for assembly made by mobile robots, as the
structure description, and the dynamic selection of a feasible path
along the traversable truss beams are bound to this peculiar ap-
proach. A domain-dependent AI planner greedily searches the state
space to synthesize an assembly plan, respecting the structural
constraints during the search.

The preliminary results of this research seem to indicate scaling-
up issues for the largest instances of the satellite structure only, due
to the lazy state representation adopted, which requires repeatedly
applying back-and-forth sequences of actions from the search root
node. However, these issues are only relative as 1) the assembly
plan can be generated offline without any issue, and 2) splitting the
problem between independent autonomous mobile agents would
drastically reduce the overhead.

On the search algorithm side, possible improvements could be
achieved by refinement of the state representation, using more
accurate heuristics for action selection (e.g. counting the number of
actions necessary to reach, disconnect from its neighbors, and move
an element), or assessing the plan quality by measuring execution
time and actual distance traveled by the mobile agent.

On the model side, future work is to differentiate reachable ele-
ments that can only support crawling robots but not be movable
to a new position. Connecting constraints, depending on the het-
erogeneity of the nodes and beams, e.g. male/female interfaces, are
used for determining the initial graph, but are not translated into
assembling constraints for the final structure.

Distributing the assembly task among independent autonomous
mobile robots is the approach that aims at having robots work-
ing as a team [24, 29]. Multi-agent tasks can greatly benefit from
intelligent cooperation between team agents and can achieve per-
formance close to the theoretical optimum [8]. Thus, to perform
large-scale assembly tasks, the robots must coordinate their actions.
This would be efficient in the structure modeling described in this
paper, as the displacement of elements by one agent would create
movement support for the other agents, and taking advantage of
redundancy would speed up assembly or maintenance tasks.

This research direction is supported by recent advances in agent
task allocation in the context of collaborative heterogeneous robots,
where a decentralized approach simultaneously allocates and de-
composes high-level tasks among various agents [22]. Coordination
of assembly agents allows for resource sharing, rather than the sep-
aration of individual workloads, and may support specific actions,
such as jointly disconnecting elements to make them movable.

Other physical constraints will limit the total maneuver time of
the crawling robots, which is dependent on the path followed, the
motion of the payload, and the motion of the robots themselves.
Excessive velocity of the robot CoM can affect the attitude stability
of the satellite. Such constraints imply the adoption of a temporal
planning paradigm [7, 25, 30] to express action durations, temporal
constraints between agents, and time synchronization.
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