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ABSTRACT
In high-risk, high-cost environments like Mars it is necessary for
robotic agents to either respond to or reason through potential
indicators of trouble before they escalate to problems that effectively
mean mission failure. Currently, no broadly applicable solution
exists to give a complicated and specialized agent like The Regolith
and Ice Drill for Exploring New Terrain (TRIDENT) the ability
to understand the rate of its progress on a task or the situational
awareness to know when a situation might escalate to a drilling
fault. We examined logged data from previous field experiences
to better understand potential drilling faults TRIDENT will have
to reason through. We applied time series analysis techniques to
determine what trends in the data exist during faults and if change
point analysis or other machine learning methods could be used to
predict faults of the drill.
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1 INTRODUCTION
The Atacama Rover Astrobiology Drilling Studies (ARADS) project
was developed to explore and understand the mobility and distri-
bution of salts, compounds, biosignatures, and extant life down to
a 1 meter depth in planetary environments using a rover with an
attached drill [7]. The rover contains other analysis equipment like
a sample transfer arm, soil chemistry analyzer, and other mech-
anisms not directly affecting the drill or its software. The rover
provides mobility and power to the drill and directly impacts its
function. This entire system including the drill and rover was tested
in Chile in September 2019. Diagnostic and automation software,
including onboard planning and scheduling and fault diagnosis and
recovery, was prototyped [10].
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Part of the onboard planning and scheduling software, Icebreaker
Executive (IbExec), coordinates the control of multiple robotic sub-
systems and ARADS missions. Stucky et. al. [26] discuss its capa-
bilities including commanding a robotic arm and robotic drill in
coordination with one another. At the core of IbExec is the Plan Exe-
cution and Interchange Language (PLEXIL), a synchronous reactive
language used to write procedures and that enables the extensi-
ble hardware interface. Dowek. et. al. [5] describe how PLEXIL
was developed by NASA to support autonomous commanding and
monitoring for a variety of space systems that have limited compu-
tational resources. PLEXIL programs, called plans, specify actions
to be performed by an executive system. A PLEXIL plan consists of
nodes organized in a tree-like structure that can run simultaneously
and monitor conditions in an environment.

The primary ARADS component we focus on is the drill, known
as “The Regolith and Ice Drill for Exploring New Terrain” (TRI-
DENT), shown in Figure 1. It is a 1-meter rotary percussive drill
manufactured by Honeybee Robotics based on nearly a decade of
development. This drill is designed to generate cuttings from a bore-
hole for analysis by other ARADS system components. TRIDENT is
the baseline for the Volatiles Investigating Polar Exploration Rover
(VIPER) mission set to launch at the end of 2024 [29] [10]. ARADS
uses IbExec as its onboard autonomy software to control payloads,
such as TRIDENT. IbExec has helped automate tasks and eliminate
user error, however, it still requires constant user oversight and
assessment of the environment to select which tasks to do. Glass et
al. [12] detail the problems of planetary drilling and why making it
autonomous is not straightforward. In summary, it is impossible to
know without prior geological surveying what range of rock types
exist below the surface and what will be encountered. It will be diffi-
cult to have a one-size-fits-all program to all scenarios, since drilling
techniques differ with changes in target composition, in addition
to external factors like temperature. We spent time field testing
the TRIDENT drill with NASA Ames and the Goddard Institute
Field Team (GIFT) in the Bishop Tuff in Fall 2023 to understand how
TRIDENT works in the field. It was observed that TRIDENT gives
indicators, visually and otherwise, of a catastrophic failure well be-
fore it happens. Data graphed from collected log data indicate that a
catastrophic failure has a high likelihood of being predicted before
it happens, but the necessary components to intelligently monitor
and execute commands to avoid failure do not exist yet. Instead
of using a more traditionally proposed route to make TRIDENT
and its systems fully autonomous to operate without human input,
we propose predicting situational risk factors for critical errors for



the TRIDENT drill based on collected test data and developing a
planning model for TRIDENT to predict when human intervention
may become necessary. This will enable TRIDENT to enter into a
stable state until limited human oversight can assist with decision
making.

Figure 1: TRIDENT drill during field testing in Bishop, Cali-
fornia in Summer 2023

This paper focuses on the analysis of collected field data and
its impacts on future model development. The primary focus is on
identifying and extracting usable data, understanding what faults
exist within it, identifying trends between different variables using
time series analysis, and discussing their impact on further work.

2 RELATEDWORK
Autonomy under high-risk and little oversight conditions is not a
new concept and many ideas have been proposed on how to best
solve this for decades. Muscettola et al. [17] discuss issues surround-
ing the Sojourner rover and its mission to Mars in 1997. Since the
rover lacked onboard autonomy software, operating it for several
months was incredibly taxing on the ground crew, substantiating
the need for onboard autonomy with minimal human oversight
in future missions. They described three requirements for space
operations: autonomy for long duration, methods with guaranteed
success, and high reliability. Even though issues on autonomy have
existed for decades, we still do not have an out-of-the-box solu-
tion. Instead, Luckcuck et al. [15] discuss focus areas to solve many
of the issues brought up in [17]. The suggestions include model-
ing and simulation of the physical environments, identification of
hazardous situations, and formal verification of robot systems.

In addition to developing a theoretic solution to the identified
autonomy problem using Artificial Intelligence, we must assume we
will have to implement our solution on hardware at some point in
the process. Utilization of PLEXIL for a large portion of our solution
is expected, so we need to address any necessary considerations.
The PLEXIL [5] software framework allows for adaptability; its
adapter module allows for the swapping of communication meth-
ods without the need to alter control scripts. For example, before

TRIDENT, the same PLEXIL scripts were used to control two of
ARADS’s predecessor drills, LITA and CRUX, despite all three drills
utilizing entirely different communication middleware. The adapter
module also enables a multitude of independent systems to be
brought together under the same control umbrella, which means
PLEXIL can act as a central control executive for an entire mis-
sion [26]. Additionally, numerous tools exist to assist or provide
a framework for model checking, particularly PLEXIL5 [19] and
LTSA [3].

Work surrounding drilling automation with TRIDENT is not
new either. Glass et al. [12] discussed the need for automation with
Drilling Automation for Mars Exploration (DAME) in 2005. The
project focused on refining drill design and considering potential
ideas for automation. These ideas were further discussed by Glass
et al. [8] with the DAME, MARTE, and CRUX drills and how the
Icebreaker drill imported some prototype automation software from
DAME, but a rework was necessary since it did not work on flight
computers. These ideas influenced what would become IbExec.
Additional drilling work was conducted on Mars [16, 22].

Time series data poses more potential complications than tra-
ditional data sets for modeling and forecasting. This is due to the
typically high complexity large scale of data sets and difficulties
with forecasting. Liu et al. [14] discuss forecast methods for time
series data. Artificial Neural Networks (ANN) are typically used for
time series forecasting, however they tend to over-fit for small data
sets, which would be problematic since TRIDENT drill data sets
can be as little as several seconds. Gaussian Process Regression is a
good candidate for this data set since it requires fewer parameters,
performs generally better than ANNs, and performs better with
smaller data sets. However, it has a high computational cost which
would be amplified with the varied sizes of our data sets.

In addition to forecasting for time series data, we also utilize
offline Change Point Detection (CPD) algorithms to detect shifts
in the mean. With our use of offline methods, it is worth noting
online algorithms that may fit our future use case. Notably, Adams
et al. [1] discussed Bayesian CPD and its applicability to robotics.
Specifically, how robots must navigate using past sensor data in an
environment that may have abruptly changed. Due to the changing
and unknown planetary environment TRIDENT may navigate, on-
line CPD methods like Bayesian could be an excellent fit for later
objectives, assuming offline methods are sensitive to our current
fault datasets.

3 PRELIMINARIES
To create a formal problem definition, we need to understand what
relationships exist in the data collected. Figure 2 is a sliced repre-
sentation of the types of drill data collected and how they can be
annotated and represented to be understandable at a casual glance.
The figure in particular shows a hard-material and corkscrew-
ing fault with a predecessor drill during testing in Antarctica in
2013. Some of the most pertinent data logged from the drill and
its immediate components are shown in the graph and include
variables related to the specific position of the drill bit in space
(𝑧𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛, 𝑎𝑢𝑔𝑒𝑟𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛), forces on and applied to the bit and mo-
tor (𝑊𝑜𝑏𝐴𝑑 𝑗𝑢𝑠𝑡𝑒𝑑 , 𝐴𝑢𝑔𝑒𝑟𝑃𝑜𝑤𝑒𝑟 , 𝑍𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦, 𝑃𝑒𝑟𝑐𝑃𝑜𝑤𝑒𝑟 ), and vari-
ables related to the immediate external environment (𝐻𝑜𝑙𝑒𝐷𝑒𝑝𝑡ℎ,



𝐵𝑖𝑡𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒). In addition to corkscrewing faults and hard ma-
terials faults, these time series data points can give us indications of
other faults like choking and binding faults. Choking faults occur
when excess drill cuttings accumulate in the bottom of the hole
with nowhere to go, and binding faults occur when cuttings get
stuck between the bit and the side of the hole. The data is non-static
over time, and depending on conditions and situations could span
as little as a few seconds to several minutes.

Figure 2: Data collected while drilling in Antarctica in
2013 showing a hard material fault and then a subsequent
corkscrewing fault for automated drilling [9]

Once TRIDENT’s data relationships have been established, we
will use AI planning to understand drill progression based on envi-
ronmental feedback from sensors. Since the environment of TRI-
DENT’s potential errors is complex, we can approach this problem
as a sequential decision problem. IbExec’s modules can be repre-
sented by several states described by the terms calibrate, home,
deploy, drill, retract, recovery, and stow, as shown in Figure 3.

Figure 3: TRIDENT’s behavior represented in several states
described by the terms calibrate, home, deploy, drill, retract,
recovery, and stow

The states of TRIDENT are: 𝑆 (𝑇𝑟𝑖𝑑𝑒𝑛𝑡) = {home, retract, stow,
calibrate, deploy, drill}. Each state in 𝑆 (𝑇𝑟𝑖𝑑𝑒𝑛𝑡) has a set with all
possible sub-states. For example, if 𝑑𝑟𝑖𝑙𝑙 ⊂ 𝑆 (𝑇𝑟𝑖𝑑𝑒𝑛𝑡) the state
drill could be represented by 𝑆 (𝑑𝑟𝑖𝑙𝑙) = {0 mm, 5 mm, 10 mm, 15

mm, 20 mm, 25 mm, 30 mm, 35 mm, Retract, Early-Retract}, with the
initial state being 0 mm, and where each state in the set 𝑆 (𝑑𝑟𝑖𝑙𝑙) rep-
resents progress in drilling toward a specified depth in increments.
Both terminal states are modeled as Retract, where TRIDENT re-
tracts once the specified depth has been reached, or Early-Retract,
where retraction is done before reaching the specified depth. In this
example, a drilling depth of 35 mm is specified, and each increment
of 5 mm is a state. For this example, we represent the states in a
state map format as in Figure 4.

We can now define a Markov Decision Process (MDP). We can
represent ourMDP for𝑑𝑟𝑖𝑙𝑙 ⊂ 𝑆 (𝑇𝑟𝑖𝑑𝑒𝑛𝑡) as a five-tuple ⟨𝑆,𝐴,𝑇 , 𝑅,𝛾⟩
where 𝑆 is a set of all possible states reachable in 𝑆 (𝑑𝑟𝑖𝑙𝑙), 𝐴 is a
set of all possible actions in 𝑆 (𝑑𝑟𝑖𝑙𝑙), which for this example is
defined as 𝐴(𝐷𝑟𝑖𝑙𝑙) = {𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒, 𝑟𝑒𝑡𝑟𝑎𝑐𝑡}, where continue equates
with continuing to drill, and retract equates to retracting before
drilling to the specified depth. 𝑇 is the transition model, which
represents for each state 𝑠 and action 𝑎 the probability of reaching
another state 𝑠′. We write 𝑇 as 𝑇 (𝑠′ |𝑠, 𝑎). In our current example, a
transition probability could be𝑇 (5𝑚𝑚 |0𝑚𝑚,𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒). 𝑅 is defined
as a reward function 𝑅(𝑠, 𝑎), where 𝑅 represents the reward for
taking action 𝑎 in state 𝑠 . For example, if we were at 0 mm and
about to begin drilling, the reward function for taking the action
𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒 would be 𝑅(0𝑚𝑚,𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒). 𝛾 is a discount factor where
0 < 𝛾 < 1. The discount factor is used to favor a more immediate
reward in the next state versus a more distant reward several states
in the future. A solution specifies what the agent should do in any
state that the agent might reach. A solution is called a policy. 𝜋 is a

Figure 4: Possible states for drilling depth 35mm in S(Drill).

policy, and 𝜋 (𝑠) is the action recommended by the policy for state
𝑠 . The optimal policy, which produces the highest expected utility,
is denoted by 𝜋∗.

We can solve this problem with the value iteration algorithm
which uses the Bellman equation:

𝑈 (𝑠) = max
𝑎∈𝐴

{∑︁
𝑠′

𝑇 (𝑠′ |𝑠, 𝑎)
[
𝑅(𝑠, 𝑎) + 𝛾𝑈 (𝑠′)

]}
(1)

where𝑈 (𝑠) represents the utility of state 𝑠 , which is a measure of
the desirability of a state. The set𝐴 encompasses all possible actions



that can be taken. The transition probability, 𝑇 (𝑠′ |𝑠, 𝑎), quantifies
the likelihood of moving from state 𝑠 to state 𝑠′ using action 𝑎.
The reward for taking action 𝑎 in state 𝑠 is given by 𝑅(𝑠, 𝑎). 𝛾 is
the discount factor, indicating the relative importance of future
rewards compared to immediate rewards. The expected utility for
executing a policy is the expectation of the weighted sum of the
rewards. The value iteration algorithm calculates the utility of each
state and uses the utilities to select an optimal action in each state.

To influence online decision-making, we will create utility and
reward probability functions and represent risk and reward using
online data from PLEXIL nodes. Since PLEXIL nodes can run con-
currently,we can monitor several key data related to position and
progression, forces applied to the bit and motor, and environmental
variables at once. When a node fails, or returns a changed value, it
can trigger an action within our model that brings us closer to either
terminal state. We will define our utility function(s) thresholds from
previously analyzed combinations of data that often predict certain
errors. This will help define what actions are taken in the model.
When the model reaches a transition state with a high enough
probability fault, the reward function will influence actions that
lead to the second terminal state, which may lead to TRIDENT
backtracking, entering a stable recovery mode, or doing another
action depending on the defined action. The ultimate goal is to
make progress but to evaluate values for risk vs reward to inform
an optimal policy to avoid a mission-critical failure.

4 METHODS
4.1 Experimental Setup
Before analysis of the drill data, it is important to understand the
data types and how data must be processed. We analyzed data
collected at field events over the last decade to determine what data
would be the best candidates for processing initially. We examined
both electronic data and hand written notes from field testing. Most
of the time-series data has a similar length, however, there were
some examples both exceptionally long or short, potentially due to
different types of material being drilled into.

We considered all possible instances where data was collected.
Prior to 2016, the CRUX drill was used [8], which had different
hardware than the TRIDENT drill. Data from CRUX were recorded
in data space-separated values (SSV) plain text files. After 2016,
TRIDENT was used and data were recorded in Hierarchical Data
Format version 5 (HDF5) binary files, which require more work to
process. We could not consider any data prior to 2016 due to the
method of data storage. Additionally, the drill hardware used for the
experiment, CRUX, had different calibrations and settings which
would potentially cause variations if compared side by side with
more recent data. We combed through data collected after 2016 and
notes in search of data that resembled choking and binding faults.
We were able to collect two visually clean instances of choking
and faults from the Haughton Mars Project (HMP) at Devon Island,
Canada [11] and subsequently at the Goddard Instrument Field
Team’s September field deployment to the tuff deposits near Bishop,
CA in 2023 [25]. We also collected eleven instances of clean choking
and binding faults from the Life-detection Mars Analog Project
(LMAP) in Rio Tinto, Spain in 2017 [21].

Figure 5: Upper image shows normal drilling operations dur-
ing testing. Bottom image illustrates choking fault during
testing. Both testing done in Devon Island, Canada [11]

Figure 5 shows two examples of time series data for two different
holes on a recent field exercise. The first illustrates normal drilling
operation and the second illustrates a choking fault. From observing
plots with field notes, we inferred that choking and binding faults
tend to raise Torque andWeight on Bit while the Rate of Penetration
is roughly zero. This indicates that multiple variables could be
used to predict faults, however, we decided to examine variables
individually. We first decided to further examine Torque data in
our time series analysis due to its distinct and similar shape across
all fault graphs, and later focus on other data features like Rate of
Penetration and Weight on Bit.

4.2 Time Series Analysis and Predictions
Time series analysis plays a crucial role in understanding the pat-
terns and predicting future trends in the data. This section focuses
on applying time series analysis techniques to analyze the drill’s
performance of data of varying lengths in a similar domain and
identifying similarities between faults. Then forecasting will be
utilized to examine whether trends can be predicted with machine
learning techniques like Support Vector Machines (SVM), Random
Forest, AdaBoost, and Long Short Term Memory (LSTM) networks.

Dynamic Time Warping. A large concern with TRIDENT data is the
availability of fault data and the usability of previously collected
data. Most datasets of faults are similar in length, but some are
either very short or very long in duration, and it is difficult to com-
pare data of different lengths. Collecting data requires assembling



the standalone TRIDENT drill with its many components. When
assembled, two people must attend to its operations and ensure
detailed notes are being taken. While not necessarily required, trav-
eling to sites with ideal materials that may not easily be simulated
is helpful for testing for specific faults. Faults are not guaranteed
during testing, hence we must make use of every data set collected.
While most data are similar in duration, we sometimes find datasets
of incredibly short duration or much longer duration than average.
Comparing data outside the average range of duration side-by-side
with data sets existing within it leads to inaccuracies. Using tools
like Dynamic Time Warping (DTW) [20] we can help map data
of unequal length to the same dimensional space. DTW can be
represented by an 𝑛×𝑚 matrix, where 𝑛 and𝑚 represent the length
of two datasets 𝑥 and 𝑦.

𝐷𝑇𝑊 (𝑥,𝑦) =𝑚𝑖𝑛𝜋

√︄ ∑︁
(𝑖, 𝑗 ) ∈𝜋

𝑑 (𝑥𝑖𝑦 𝑗 )2 (2)

DTW finds the squared Euclidean distance between each point
in each graph, and tracks the most cost-effective path in terms of
distance. In addition to DTW, DTW Barycenter Averaging (DBA)
is a global averaging method for DTW [18]. Instead of an iterative
averaging approach, DBA takes in multiple sets of data (𝐷) and
creates an average from multiple sets without creating bias to one
piece of data over the other. We elected to try the DBA expectation-
maximization approach [18] instead of the sub-gradient descent
approach, which is generally more efficient for larger data sets [23].

𝑚𝑖𝑛𝜇

∑︁
𝑥∈𝐷

𝐷𝑇𝑊 (𝜇, 𝑥)2 (3)

We used tslearn [27] package for python to see what initial results
looked like. Below in our initial test, we can see the input of two
data sets of different lengths where we applied DBA.

Figure 6: DTW and Barycenter Averaging used to find the
average of two time series datasets of different lengths

Forecasting. In addition to DBA, we explored several forecasting
methods to help us better understand if faults can be predicted
and in what contexts. Once we have decided on the prediction
method, we will use it to learn the probability of fault and how it
will influence decision-making. In particular, we were interested in

exploring how conventional machine learning and neural network
methods could detect in our time series data sudden data changes,
like a mean shift or an increase in variance before a fault, and if
so, how many steps ahead. These will help inform us what online
change prediction methodology to choose in later stages since early
fault detection will require rapid decision-making.

Among the forecasting models evaluated, our analysis incorpo-
rated both traditional machine learning techniques and advanced
neural network architectures, specifically:

• Long Short Term Memory (LSTM) networks were employed
given the complexity and volume of the drilling data. LSTMs,
which are a type of Recurrent Neural Network, are effective
in capturing long-term dependencies in time series data.

• Support Vector Machines (SVM) were employed for their ef-
fectiveness in high-dimensional spaces and versatility in
capturing complex data relationships through kernel func-
tions.

• Random Forest was used for robustness and ability to model
non-linear relationships through an ensemble of decision
trees, providing insight into feature importance for predic-
tion.

• AdaBoost was utilized to enhance the predictive performance
by combining multiple weak learners into a strong ensemble
model, aiming to improve fault detection accuracy.

Evaluating LSTM for Advanced Forecasting. The decision to em-
phasize Long Short-Term Memory (LSTM) networks in our study
was due to their unique ability to prioritize recent observations in
time series data, critical for early detection of faults. The LSTM
model wasmeticulously configured and trained to forecast up to 100
points ahead, providing a significant lead time for fault detection
and prevention.

This LSTM model employs a structured architecture to effec-
tively capture long-term dependencies inherent in the dataset. The
network is composed of an input layer tailored to accept a single
feature (input dimension of 1), followed by two stacked LSTM layers
with 32 hidden units each to enhance the model’s ability to learn
complex temporal patterns. To connect the recurrent layers to the
output, a linear layer transforms the final hidden state’s output to
the desired prediction length of 100, enabling the model to output
a sequence of predictions based on the input sequence. The model
utilizes the Adam optimizer with a learning rate of 0.01, leveraging
its adaptive learning rate properties for efficient convergence.

Table 1: Evaluation metrics for forecasting models of fault
data

Model R-squared (R2) MAE MSE
SVM 0.9339 0.5300 1.6615
Random Forest 0.9599 0.4998 1.0076
AdaBoost 0.9371 0.7439 1.5812
LSTM 0.9873 0.2309 0.1880

The comparative analysis of forecasting models, summarized in
Table 1, underscores the Long Short-Term Memory (LSTM) model’s
performance in time series forecasting. With an R-squared value
of 0.9873 and the lowest Mean Squared Error (MSE) of 0.1880, the



Figure 7: Comparative visualization of time-series predic-
tions from the LSTM model alongside baseline models (Lin-
ear Regression, SVM, Random Forest, and AdaBoost).

LSTM model demonstrates a superior ability to accurately predict
future data points and detect potential faults. This contrasts with
traditional models like SVM, Random Forest, and AdaBoost, which,
despite their robustness, exhibit higherMSEs, indicating a lower pre-
diction accuracy. Figure 7 visualizes the time series predictions from
the methods shown in Table 1. The results highlight the LSTM’s
potential to significantly enhance fault detection methods through
advanced time series analysis, paving the way for its integration
into predictive maintenance systems for drilling operations.

Predicting With Other Features. In the subsequent analysis, we
looked into the predictive capabilities of the previously used mod-
els with additional features, specifically Weight on Bit and Rate
of Penetration, to forecast drilling performance. The correlation
analysis among Weight on Bit, Rate of Penetration, and Torque
presents intriguing insights. While there is a relatively weak pos-
itive correlation between Weight on Bit and Rate of Penetration
(0.069026), and a slight negative correlation between Weight on Bit
and Torque (-0.211191), most notable is the strong negative corre-
lation between Rate of Penetration and Torque (-0.810810). This
suggests that as the rate of penetration increases, the torque re-
quired decreases, which could be indicative of underlying physical
dynamics in drilling operations.

4.3 Change Point Detection
Because of the variety of data, manually encoding values in any
update function would be tedious and potentially inaccurate if cer-
tain cases for behavior were not considered. According to Statham
[24] in their thesis discussing planetary drilling, using online ma-
chine learning techniques could be too computationally complex
for real-time detection of faults in a planetary environment. CPD
algorithms could offer a less computationally complex solution for
detecting sudden shifts of data in an online environment. We will
explore CPD algorithms as a possibility for understanding data
changes that differ significantly and suddenly from the mean or a
steady rapidly increasing linear trend of time series data.

Figure 8: Offline CPD using the bottom-up approach. The top
figure has a high 𝜖 specified leading to only large significant
changes in the data being detected, while the bottom figure
has a low 𝜖 specified, leading to more noise being detected as
a change.

We explored several CPD algorithm options. We are still in an
exploratory phase, so we are primarily concerned if CPD algorithms
are appropriate for the types of data produced by TRIDENT. We
focused on whether parameters for different offline CPD algorithms
could be adjusted to fit our use case and successfully detect the ob-
served change. We explored the offline Binary Segmentation [6] [2]
and Bottom-Up approaches [13] [6]. Binary Segmentation works
by dividing data into pieces based on change point locations. It has
a low complexity and is usable whether the number of estimated
change points is known in advance or not. Bottom-Up works by
dividing up the data into sub-signals, and signals are merged de-
pending on their similarity. We used the Python package ruptures
[28] due to its simplicity and the l2-norm cost function.

We started with our time series Torque data, since they have
the most observable sudden abrupt change compared to Weight on
Bit and Rate of Penetration. With our raw data containing some
noise and variations, we focused on adjusting the model to only
catch the large significant changes from the mean. We did not
specify the number of change points to detect. Both models allowed
adjusting the residual norm, or the 𝜖 . With a small 𝜖 , we would catch
every minor change from the local mean. With a larger 𝜖 we would
decrease the sensitivity of the model to smaller changes in our
dataset. As we increased our 𝜖 , fewer less-significant changes in the
mean were caught and eventually only the major significant change
was detected. This is demonstrated in Figure 8 using Bottom-up



to detect change points in Torque data, where the top figure has a
higher 𝜖 than the bottom figure.

We extended this methodology to our other data features. Unlike
our Torque data, where we were looking for a single significant
increase in the mean, in our Rate of Penetration data, we are looking
for a sudden drop in the average mean as it approaches 0. The Rate
of Penetration suddenly dropping to zero could indicate a potential
fault when observed with Torque suddenly increasing. In Figure 9,
we used both the Binary Segmentation and Bottom-Up approaches
on Torque and the Rate of Penetration with similarly high 𝜖 . We
then attempted to use these methods on Weight on Bit, which has a
more subtle drop in mean value compared to the rate of penetration.
Figure 10 shows the Weight on Bit mean changes detected by both
Binary Segmentation and Bottom-Up approach.

5 RESULTS
Time Series Analysis and Predictions. We applied DBA to a few data
samples and came out with an overall average equivalent to the
shortest dataset. Since many of the datasets we encountered are
similar in length, we concluded that this methodologywould be best
applied to datasets that were very long compared to the majority
of time series data collected.

Table 2: Data Lengths for DTW and Averaging

Data Name Length (Time steps)
HMP 28144
LMAP 27911
LMAP2 30456
Overall Average 27910

Upon training various models with these features, the perfor-
mance metrics offer a comprehensive view of each model’s fore-
casting accuracy. The SVM model yielded a respectable R-squared
(R2) value of 0.7854, a Mean Absolute Error (MAE) of 7.1914 and
a Mean Squared Error (MSE) of 139.2531. Conversely, the LSTM
model exhibited a decline in performance under the same condi-
tions with an R-squared value of -4.9957 and significantly higher
error metrics (MAE: 57.0845, MSE: 3890.6091) over just ten epochs
of training. The LSTM model struggled to adapt to this dataset’s
dynamics. These results underscore the SVM’s ability in capturing
the underlying patterns within this dataset.

Table 3: Comparison of forecasting models for 1-point and
100-point predictions of fault data

Model 1-point Prediction 100-point Prediction
MSE R2 MAE MSE R2 MAE

SVM 1.5572 0.9386 0.4932 1.6615 0.9339 0.5300
Random Forest 0.7787 0.9693 0.4024 0.9837 0.9609 0.4972
AdaBoost 1.3035 0.9486 0.6578 1.5298 0.9391 0.7046
LSTM 0.0086 0.9994 0.0696 0.1499 0.9899 0.2144

In the analysis presented in Table 3, the LSTM model exhibits
a notable performance advantage in forecasting torque values up
to 100 steps ahead, achieving an MSE of 0.1499 and an R-squared

value of 0.9899. This contrasts with the performance of traditional
models such as SVM, Random Forest, and AdaBoost, which, while
robust, show higher MSEs, indicating a lower prediction accuracy
over both short and long-term forecasts in Figure 9.

Figure 9: Results of CPD on Torque and rate of penetration
time series data using Bottom-Up and Binary Segmentation.

Specifically, the LSTMmodel’s precision in long-term predictions
far exceeds that of its counterparts, with a significantly lower MSE
and higher R-squared value, highlighting its efficiency in capturing
temporal dependencies in time series data. This analysis emphasizes
the LSTM’s potential for detailed time series analysis, crucial for
applications requiring advanced forecasting capabilities.

Change Point Detection. At first glance, both the Binary Segmen-
tation and Bottom-Up approaches were able to detect the desired
change point when 𝜖 was increased enough to make both models
less sensitive to noise. The Binary Segmentation failed to narrow
changes down to one single change point despite increasing 𝜖 sev-
eral times. Since a high 𝜖 can make the model less accurate and
less sensitive to change, it might cause issues with increasing it too
much. In Figure 9 the top chart shows Binary Segmentation detected
two change points while the bottom chart shows the Bottom-Up
approach detecting our change as a single change point. Both of
these methods do show a sudden shift of the overall mean can be
easily detected and narrowed down to one or two points by CPD.

It was more difficult to narrow it down to a single change point
with the gradual drop in the mean in the Weight on Bit data to zero.
In Figure 10 we use both the Bottom-Up and Binary Segmentation
CPD methods to try to find a single change point in the Weight on
Bit. While it would be ideal to observe one or two change points
in this dataset and others similar to it, we were unable to adjust 𝜖
meaningfully to observe results like that.

However, instead of being concerned with the mean shifting to
some arbitrarily high number, with Weight on Bit we are concerned



Figure 10: Results of CPD of Weight on Bit using Bottom-Up
and Binary Segmentation methods.

when it approaches and hovers around zero in conjunction with
sudden increases in our Torque and a sudden decrease in Rate of
Penetration. Depending on the specific parameters of any future
MDP or other methods, it might be sufficient to analyze change
points only in Torque and Rate of Penetration and monitor Weight
on Bit to see if it is below a certain threshold.

6 DISCUSSION
Time Series Analysis and Predictions. One of the reasons we selected
DBAwas its insensitivity to ordering and avoidance of iterative pair-
wise averaging [18]. However, with DBA in python using tslearn,
we noticed that processing two data-sets was fairly quick, but when
processing more than three datasets concurrently, the CPU killed
the process nearly every iteration. Because Python tends to be very
CPU intensive, comparing three data-sets of length 𝑖 , 𝑗 , and 𝑘 made
the DTW algorithm run at 𝑂 (𝑖 𝑗𝑘), which assuming the data sets
were all of similar length, made our time complexity an inefficient
𝑂 (𝑛3). Even with the option to use NVIDIA’s Cuda Toolkit [4] with
Python, we could improve complexity by writing the DTW algo-
rithm in a language like C++ or C instead of Python and hand-off
processes to the GPU more efficiently. This will be explored if we
find more datasets outside the average length range.

The evaluation of forecastingmodels for fault detection in drilling
operations has highlighted the advantages of using Long Short-
Term Memory (LSTM) networks over traditional machine learning
methods like Support Vector Machines (SVM), Random Forest, and
AdaBoost. Our analysis, as illustrated in the comparative perfor-
mance table and figures, underscores the LSTMmodel’s exceptional
ability to predict future data points with high accuracy, as evidenced
by its highest R-squared value and the lowest MSE.

One insight from our study is the LSTM’s handling of the com-
plexities and temporal dependencies inherent in time series data.
The LSTM architecture, which emphasizes recent observations
through its memory cells, proves to be particularly beneficial for
early fault detection. The ability to forecast up to 100 points ahead
with considerable accuracy provides a significant lead time, en-
abling preemptive actions to mitigate or avoid potential faults.

In our exploration of predictive maintenance within drilling
operations, a central focus has been on the accurate forecasting
of critical operational parameters such as Torque, Weight on Bit,
and Rate of Penetration. While these variables provide invaluable
insights into the drilling process, our analysis suggests a need to
advance beyond traditional forecasting. Specifically, we propose

quantifying the likelihood of equipment failure on a scale from 0
to 1 for example, transforming our predictive model into a robust
failure probability estimator. This approach not only enhances
the interpretability of the forecasts but also enables the setting of
threshold values that could signal imminent operational failures.

The contrast in model performances observed in our results
section, particularly the higher accuracy of the SVM in forecast-
ing torque from related parameters versus the LSTM’s challenges,
underscores an insight into predictive modeling for drilling opera-
tions. This variance highlights a pivotal consideration: the direct
prediction of parameters such as Torque, Weight on Bit, and Rate of
Penetration, while useful, may not optimally harness the potential
of sophisticated models like LSTM in contexts where the prediction
target is closely intertwined with the input features.

Furthermore, this pivot towards failure probability estimation,
while enhancing model interpretability, complements the applica-
tion of CPD in our predictive maintenance framework. CPD, with
its capability to detect significant shifts in data patterns, becomes
particularly valuable when aligned with the probabilistic outputs of
our predictive models. By integrating these probabilistic forecasts
with CPD, we can achieve a more dynamic and contextually aware
fault detection mechanism. This integration not only capitalizes on
the strengths of both methodologies but also addresses the critical
need for timely and accurate fault detection in drilling operations.

Change Point Detection. Depending on our data sets, we may have
to adjust 𝜖 to catch slightly smaller significant shifts in the data.
This will be determined as we continue to sort through test data
and acquire new data. We may also have to adjust the algorithm as
change points can differ due to environmental factors in a plane-
tary environment or the composition of the materials drilled into.
Despite these considerations, CPD algorithms will be an excellent
tool for helping detect indicators of faults early to prevent them
from happening, especially as we move to consider online detection
methods.

7 CONCLUSIONS AND FUTUREWORK
Our primary goal with this paper was to focus on the analysis of
field data and its impacts on future model development. We were
able to achieve the goal of evaluating and understanding the fault
data from TRIDENT and projecting the data to the same time do-
main for time series analysis. Through our analysis of the data using
forecasting methods, we can conclude the time series data from
the TRIDENT drill follow predictable trends when leading up to a
fault, and those trends can be detected through offline CPD meth-
ods. We believe this will provide a basis for further work including
establishing a robust method for data predictions. Additionally, we
plan to incorporate situational factors into our methods, including
accounting for different planetary sediments and terrain. We will
use these findings to create a deterministic model for TRIDENT
to understand its rate of progress on a task and the situational
awareness of when a situation might escalate to a drilling fault.
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