
CADRE MoonDB: Distributed Database for Multi-Robot
Information-Sharing and Map-Merging for Lunar Exploration

Maíra Saboia
Jet Propulsion Laboratory, California

Institute of Technology
Pasadena, CA, U.S.A

maira.saboia.da.silva@jpl.nasa.gov

Federico Rossi
Jet Propulsion Laboratory, California

Institute of Technology
Pasadena, CA, U.S.A

federico.rossi@jpl.nasa.gov

Viet Nguyen
Jet Propulsion Laboratory, California

Institute of Technology
Pasadena, CA, U.S.A

viet.t.nguyen@jpl.nasa.gov

Grace Lim
Jet Propulsion Laboratory, California

Institute of Technology
Pasadena, CA, U.S.A

grace.lim@jpl.nasa.gov

Dustin Aguilar
Jet Propulsion Laboratory, California

Institute of Technology
Pasadena, CA, U.S.A

dust.aguilar@gmail.com

Jean-Pierre de la Croix
Jet Propulsion Laboratory, California

Institute of Technology
Pasadena, CA, U.S.A

jean-pierre.de.la.croix@jpl.nasa.gov

Abstract
We introduce MoonDB, a distributed database designed to support
cooperative robotic exploration and distributed measurements for
NASA’s upcoming Cooperative Autonomous Distributed Explo-
ration Rovers (CADRE) mission. MoonDB stores, shares, and fuses
information from multiple robots, providing multi-agent planning
algorithms with a consistent view of the robotic team. It does so
without assuming continuous communication, and significantly
limiting bandwidth use through judicious selection of the state
variables to share and of the sharing policy and frequency. Fur-
ther, MoonDB integrates with a pose graph optimization module,
allowing mapping information collected by individual robots to be
re-localized a posteriori based on refined localization information.
Map-merging and reconciliation of inconsistent mapping informa-
tion uses OpenGL acceleration, resulting in excellent performance
on embedded systems. Overall, MoonDB provides a spaceflight-
quality solution to the problem of information-sharing for CADRE,
addressing one of the key challenges in coordination of multi-agent
systems. This paper presents MoonDB’s design, the underlying
assumptions guiding its development, and implementation details
to enhance comprehension. Additionally, we offer preliminary ex-
periments and analyses to validate our approach.

Keywords
Multi-Agent Systems, Space Robots, Distributed Databases, Data
Management Systems

ACM Reference Format:
Maíra Saboia, Federico Rossi, Viet Nguyen, Grace Lim, Dustin Aguilar,
and Jean-Pierre de la Croix. 2024. CADREMoonDB: Distributed Database for
Multi-Robot Information-Sharing and Map-Merging for Lunar Exploration.
In Proc. of the 23rd International Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2024), Auckland, New Zealand, May 6 – 10, 2024,
IFAAMAS, 9 pages.

Proc. of the 23rd International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2024), N. Alechina, V. Dignum, M. Dastani, J.S. Sichman (eds.), May 6 – 10, 2024,
Auckland, New Zealand. © 2024 International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). This work is licenced under the Creative
Commons Attribution 4.0 International (CC-BY 4.0) licence.

1 Introduction

Multi-robot systems hold promise to unlock the answers to a num-
ber of hitherto-unexplored questions in planetary science, pro-
viding the unique opportunity to collect simultaneous measure-
ments at spatially-distributed locations. This unique capability en-
ables for new kinds of instruments, including multi-static ground-
penetrating radars for high-resolution imaging of the Lunar sur-
face, seismic networks to localize seismic activity, and distributed
weather instruments to study atmospheric circulations on planetary
bodies with atmospheres.

The CADRE mission [4, 5], funded by NASA’s Game-Changing
Development program, serves as a technology demonstration plat-
form for autonomy technologies that will power such future multi-
robot scientific explorers. Set to deploy three autonomous robots to
the Moon’s Reiner Gamma region, CADRE’s objectives include the
autonomous exploration of a region near the landing site and the ex-
ecution of a multi-static ground-penetrating radar (GPR) survey with
the least possible ground intervention. CADRE’s novel multi-agent
autonomy solution translates high-level commands from ground
operators, such as “explore this region”, into commands for the
rovers’ individual surface navigation stacks, e.g., “go to this loca-
tion by this time”, accounting for the agents’ available resources
and ensuring that the system avoids a single point of failure that
could compromise the mission [4].

CADRE’s multi-agent autonomy architecture components are
distributed across multiple agents in the system. Some of these
components utilize information about the whole system, while
others utilize information from a single agent [4]. (a) The leader
election module ensures continuous leadership, with a leader medi-
ating all coordination among agents, and immediate reelection in
case of leader loss [1]. (b) The strategic planner on the leader plans
cooperative activities, considering available resources, generating
coordinated task sequences for each rover. A pair of team planners
on the leader refine the strategic planner’s commands by adding
spatial information: (c) a sampling-based motion planner computes
obstacle-free trajectories that satisfy inter-rover separation con-
straints required for distributed measurements (i.e., the multi-static
GPR survey) and (d) an exploration planner employs a divide-and-
conquer approach to assign agents to regions they should explore



[8]. The (e) agent planner on each leader further refines instruc-
tions received from the team planners. Finally, the (f) shared state
database samples, distributes, and aggregates various types of data
collected and produced by the robots, enabling multi-agent situ-
ational awareness and effective planning. We refer the reader to
[4] for a detailed discussion of CADRE’s multi-agent architecture.
This paper discusses the shared state database, or MoonDB, and
any relevant aspects of above components (a)-(e) that influenced
the design of MoonDB.

The MoonDB component not only oversees data storage and
sharing across multiple robots but also performs data fusion, in-
tegrating multiple data sources (in particular, maps) to generate
more consistent and useful information than that provided by any
individual robot. MoonDB supplies the leader with the necessary
knowledge of rovers’ location, temperature, and power states, as
well as individual and fused localization and mapping data. It also
allows data synchronization and replication, with a specialized
sharing policy for each data type. The capabilities provide by this
component are crucial in scenarios where multiple robots need to
work together to achieve a common goal. There are many key as-
pects to be considered in designing a multi-robot data management
solution. The adoption and design of a solution depend on the appli-
cation’s requirements and will vary significantly from one system
to another due to factors such as the size of the robot teams, the
system’s tolerance to faults, the amount of data shared, the available
communication protocols, to name a few. The aspects of MoonDB
were primarily shaped by the system resources, limitations, and
the CADRE mission objectives.

1.1 Related Work

Networked robotic systems commonly involve the transfer of di-
verse data types. In [9], the authors categorize data transferred
between robots into three classes: key, mission-critical and time-
sensitive. Key data refers to information that requires to be shared
periodically, which is crucial for nominal multi-robot mission con-
trol (e.g., telemetry). Mission-critical data includes crucial asynchro-
nous information, where low-latency is desired, but the total and
correct transfer of this information are of higher priority than its
transmission time (e.g., maps). Time-sensitive data refers to data
whose absence could potentially harm and put our vehicle integrity
at risk, such as relative positioning between neighboring robots in
a collision trajectory.

A number of approaches and software packages are available for
merging raster maps from multiple robots (e.g., [7, 12? ]). However,
existing approaches generally (i) offer simple merging heuristics
that provide suboptimal performance in presence of noisy maps and
do not accommodate multi-resolution maps, (ii) do not allow post-
hoc repositioning of local maps, which is required for integration
with SLAM, and (iii) rely on continuously-available communication
between robots, such as in consensus-based distributed databases [?
] - limitations that our approach aims to overcome.

The problem of multi-agent, communication-aware merging
of point cloud maps has been addressed in [3]; in contrast, our
approach merges raster traversability maps, which can readily ac-
commodate variable-resolution maps but requires complex merging
policies for reconciling disagreeing information.

Our mapping methodology is inspired by the one introduced
in [6], where pose-graphs and local maps were used to generate 3D
scene reconstructions, specifically in a single robot scenario. No-
tably, our application diverges in two key aspects. Firstly, we deploy
multiple robots, requiring our system to handle dynamic objects in
the environment. Secondly, instead of a single resolution, our rovers
generate robocentric multi-resolution local maps [10], where reso-
lution decreases with distance. Unlike scenarios expecting identical
resolutions for multiple views of the same map area, our concept
of operation anticipates varied resolutions due to robots exploring
different regions. Consequently, our merging policy incorporates
time and resolution factors, differing from their approach, which
relies on a probability function where all identical observations
carry equal weight.

1.2 Contributions
Our contributions focus on distributed data management for multi-
agent systems under intermittent, and unreliable communication, as
well as limited bandwidth constraints. These contributions include:

• Data storage: enabling persistent storage of data on each
robot;

• Data distribution: enabling specialized mechanisms for shar-
ing data, ensuring accessibility of a robot’s data by the entire
team; and

• Data fusion: extracting knowledge from the data collected
from the robot team.

Figure 1 illustrates MoonDB operations. Each rover has a data-
base used to persist data. MoonDB controls how the data is stored,
shared, and presented to the CADRE high-level planners.

1.3 Organization
The paper is organized as follows. In Section 2, we present the
constraints and requirements that drove the design of MoonDB.
In Section 3, we discuss the types of data that are stored within
individual agents’ databases. Section 4 presents the synchronization
and replication strategy adopted to share information across the
agents. Section 5 details the synchronization and merging strategy
for maps generated by multiple agents, and discusses integration
with pose graph optimization. Finally, in Section 6, we draw our
conclusions and outline directions for future work.

2 Problem Formulation
We consider a small team of robots operating autonomously in
an unknown environment, devoid of continuous connectivity. The
primary goal is to store and relay valuable information to other
robots within the system, with emphasis on presenting only the
data essential for high-level multi-agent autonomy.

The CADRE team comprises three identical lunar rovers and
one base station, as depicted in top image of Figure 2. The base sta-
tion shares similarities with the rovers in terms of computing and
wireless communication capabilities, but lacks sensors and mobility.
It is specifically hardwired for communication and power to the
lander, playing a crucial role in system downlink and uplink. The
lunar rovers have dimensions of approximately 0.75 × 0.5 × 0.2𝑚3

when the solar panels are deployed, and weigh less than 10 kg
each. Each rover is equipped with a ModalAI VOXL sporting a
Qualcomm Snapdragon 821 SoC, 4GB of RAM, and 32GB of flash



Figure 1: CADRE MoonDB is a distributed data management solution designed for autonomous lunar exploration. MoonDB
offers capabilities for data storage, sharing, and fusion, facilitating multi-agent situational awareness and effective planning.

memory. Communication between the rovers is provided by Mi-
crohard mesh network radios providing a minimum of 1Mbps of
aggregate bandwidth shared between all participating stations.

In addition to a low data rate of 1Mbps (hundred of times slower
than a typical robotics lab’s WiFi network), MoonDB is also not able
to rely on continuous data transmission across the mesh network.
The primarily reason is due to the electromagnetic interference
(EMI) generated by motors causing significant interference with
radio communication signals. This interference results in degraded
signal quality and packet loss, posing challenges for reliable data
transmission, especially during rover movement. MoonDB is in-
tentionally designed to address this communication limitation by
implementing a mechanism that selectively transfers only essen-
tial data. This strategy incorporates aspects of data stratification,
prioritization and synthesis.

Using the data categorization outlined in Section 2, MoonDB is
responsible for handling CADRE’s key andmission-critical data. The
constraints imposed by the described EMI results in MoonDB being
effectively capable of transferring data only within specific time
windows. Accordingly, MoonDB does not manage time-sensitive
data; rather, this data (namely, commands to execute tasks and task
sequences, and status reports regarding these tasks) is handled by
a separate software that able to transmit data more reliably even
under EMI disturbances, thanks primarily to lower overhead. The
design of the component for time-sensitive data falls beyond the
scope of this paper.

The robots within the system can assume one of four roles in the
context of data distribution: base station (BS), leader, designated
survivor (DS), and a standard rover. The leader is responsible for
aggregating all shareable information from the robots and also
hosts the active team planners. Meanwhile, the designated survivor
serves as a backup to the leader. In the event of a catastrophic failure
where the leader role needs to be reassigned to another robot, the
designated survivor contains all team information available in the
leader, enabling quicker recovery.

Locally, MoonDB addresses the challenge of persisting and man-
aging data storage. This capability is crucial in scenarios where
rovers undergo periodic shutdowns, and the ability to access data
from previous wake cycles is essential. As a data distribution so-
lution, MoonDB enables the team to share essential data among
themselves and provides backup mechanisms to ensure that all
vital data is readily accessible to the team planners. Additionally,
MoonDB integrates local maps collected by individual rovers with
their corresponding poses fetched from the pose graph to create
global maps that can be used by the team planners for an effective
multi-agent mission.

MoonDB is a storage, replication system for CADRE as well as a
distributed mapping module. The storage and replication system
supports any number of sources and targets and is asynchronous
and trigger based. It allows for persistent storage of data on each
robot; enables specialized mechanisms for sharing data; ensures
accessibility of a robot’s data by the entire team; and also facilitates
the extraction of knowledge from the fused information collected
from the team of robots.

3 Data Storage
The storage capability is implemented using an SQLite database, a
widely-used relational database management system (RDBMS). In
addition to essential features like being open source and stored in
a single, cross-platform file on the disk, SQLite has a small mem-
ory footprint, making it well-suited for embedded systems with
limited resources. MoonDB also benefits from SQLite’s relational
approach by giving our application the ability to create meaningful
information by joining the tables. This capability is explored when
leveraging pose graphs and maps to create global maps, described
in Section 5.

Each data type within MoonDB is represented as a table in the
database. The data classes described below are listed in Table 1.

Robot States. The robot state data type includes temperature,
power status, operational mode (awake or sleeping), autonomous



Figure 2: CADRE teams used for testing. In the top image,
from left to right there are the Situational Awareness Camera
Assembly, Deployer (one of three), Base Station; and the flight
rovers located in JPL’s clean room. In the bottom image, two
CADRE development models are shown in JPL’s Mars Yard.

Table 1: MoonDB Database Types and Sharing Policy

Category Data Type Sharing
Policy

Robot State

Temperature latest
Power latest

Awake status latest
Mode latest

Health status latest

Autonomy Status Exploration latest
Distributed Measurements latest

Localization Pose Graph: Nodes All
Pose Graph: Edges All

Mapping Local Traversability Map All

mode (current activity: exploring, executing distributed measure-
ments, or idle), and overall system health. It is important to note
that the robot state stored in MoonDB is intended for decision-
making within high-level autonomy layers, and represents only a

Figure 3: Layout of multi-size, multi-resolution local
traversability map

subset of the robot telemetry transmitted to the ground in terms of
both data type and data volume.

Autonomy Status. The autonomy status provides information
about the progress of the autonomous operations being executed.
The exploration progress includes the percentage of the region
explored by the robot team and the timestampwhen this percentage
was last measured. It also includes details about the formation
completion percentage and its corresponding timestamp.

Pose Graph. The CADRE system utilizes a pose graph to repre-
sent the pose and observation histories of all agents. In this graph,
nodes correspond to poses from individual rovers and the base sta-
tion, and edges represent either the distance between consecutive
nodes on the same agent, determined by visual-inertial odometry, or
the distance between different agents, measured using the on-board
Ultrawide-band (UWB) system.

Periodic UWB range measurements, taken before and during a
drive, allow pose graph optimization (PGO) in each team planning
cycle to mitigate pose drift from the previous cycle. The optimized
poses obtained from PGO play a crucial role in reconstructing the
global map and contribute to enhanced pose estimates used for
initialization in subsequent drives.

This component requires from MoonDB the ability of storing,
sharing a pose graph inserted by the agent as well as updating
the same graph with information coming from PGO, and propagat-
ingthese updates when replication (described in Section 4) occurs.

Local Traversability Maps. The local mapping module running
within each robot uses inputs from the on-board camera to perform
a 3D reconstruction and the assembly of a local traversability map
[11]. This map is a pyramid representation of a multi-resolution
Digital Elevation Model (DEM). The DEM pyramid structure com-
prises four layers, as depicted in Figure 3. The resolution of each
layer is half of the resolution of the layer below it, meaning that the
terrain footprint covered by one cell at the top layer is equivalent
to the footprint of four cells in the layer below. Each layer of a
traversability map is represented as a grid map with values repre-
senting either free (traversable) space, hazards/untraversable space
(rocks of a certain size and slopes beyond a certain inclination - e.g.,
inside craters) or unknown. Each local traversability map is times-
tamped and associated with a node in the pose graph, providing
the latest map pose information for that specific map.

4 Data Distribution
The goal of data distribution is consistently to share only the data
essential for subsequent planning steps. While this means that
sharing all the local maps is necessary to reconstruct a global map,
it also implies that outdated data, such as the state of a rover at
time 𝑡 , when we have collected information about the state at time
𝑡 ′ with 𝑡 < 𝑡 ′, must be excluded from the upcoming sharing tasks.



MoonDBuses two tables, namely replica and replication_log,
to manage the data distribution. Upon insertion, data explicitly
marked for sharing is included in the replica table. This means
that not all inserted data is automatically marked to be shared. A
data record marked for sharing is recorded in the replica table as a
tuple, (replica_id, agent_id), where replica_id is the primary
key of the table containing the data corresponding to the record,
and agent_id represents the identifier of the agent that initially
produced the data.

The record of the data already shared by an agent is logged in the
replication_log table. In addition to the columns replica_id
and agent_id, which retain their meanings from the replica ta-
ble, three supplementary columns are used to monitor the shared
data, its destination (column destination_id), confirmation of
data transmission (column sent_status) to the destination, and
acknowledgment of data receipt (column ack) by the destination.

Due to EMI concerns, data sharing does not occur continuously.
Robot state and autonomy status are shared periodically with the
leader agent using the "latest" sharing policy, which only shares the
latest available data point for each information type; if messages
are lost, the leader uses older data until synchronization succeeds.
For localization and mapping information, the strategic planner
initiates sharing only when the leader requires information for
replanning. Replanning occurs at times when the rovers are not
driving, which mitigates EMI concerns.

When the strategic planner requires MoonDB to distribute cur-
rently stored data to a specified destination (i.e., the leader), records
found in the replica table but not yet found in replication_log
for the specific destination are transmitted to the destination, and a
record is added to the replication_log table with sent_status
set to TRUE and ack set to FALSE. Records already present in
the replication_log table with both sent_status and ack equal
FALSE, indicating a previous attempt to share the data with no
acknowledgment received, are resent, and the sent_status is set
to TRUE. After all the data slated for sharing has been sent, the
sent_status is reset to FALSE. Acknowledgment messages are
continuously monitored, and upon receiving an acknowledgment
for a particular record, that record will no longer be subject to
further sharing with the same destination. On the receiving end,
a received record will be appended to the data table, as well as
to the replica and replication_log tables. In these tables, the
agent_id will represent the ID of the agent that originally gener-
ated the data, and the destination_id will denote the ID of the
agent receiving the data. The acknowledgment is transmitted back
to the sender.

MoonDB offers two data distribution functionalities, synchro-
nization (sync) and replication. Sync involves transferring the data
of an individual agent to a specific destination, typically the leader,
to keep it synchronized with all other agents. Replication is utilized
for backing up the leader to a designated survivor, ensuring rapid
and transparent recovery. When sync is performed, only agent
generated by the source agent is transferred to the destination; in
contrast, in replication, all the data, not only that generated by the
source agent, is transferred. The table replication_log is used to
keep track of shared information for both syncing and replication,
avoiding duplication.

Each type of data has a requirement indicating whether all (not
yet shared) records of that data type need to be transferred, if the
most recent record is preferred, or if no data should be transferred
at all. Specifically, for each data type, we can establish a distribution
policy, with options including none, latest, and all. When shar-
ing starts, data is shared based on its assigned distribution policy.
While none and all policies are straightforward, indicating sharing
nothing or everything, respectively, the latest policy alters the
semantics of the marked to be shared option at insertion time to
candidate to be shared, recognizing that older records for this data
category are obsolete. Table 1 lists the distribution policy for each
type of data managed by MoonDB.

All data exchanged between agents is encapsulated in a C++ data
structure named Message, outlined with the following components:

• agent_id: an integer identifier specifying the data originat-
ing agent.

• destination_id: an integer identifier indicating the intended
destination agent.

• remaining: an integer value representing the remaining
amount of data to be transmitted in the current sharing
cycle.

• data_type: an integer code specifying the type of the data
being communicated (e.g., Traversability Map, Robot State).

• ms_type: an integer code identifying the type of payload
attached to the message (acknowledgment or data).

• record_id: a string containing an identifier associated with a
specific record.

• sql: a string representing a populated SQL statement holding
the data to be transmitted. A SQL statement could be either
an INSERT or an UPDATE statement.

This Message structure offers a standardized format for packag-
ing and exchanging data between agents, facilitating data interac-
tions within the multi-agent system.

5 Distributed Mapping

Distributed Mapping integrates the local maps collected by individ-
ual robots to create a unified global map, covering the entire area
explored by the robot team.

Figure 4 shows the results of merging the local traversability
maps from three rovers. In the experiment displayed, robots nav-
igated within a rectangular area inside JPL’s clean room (Figure
4(a)), with various objects surrounding the region. Rover-specific
merged traversability maps, utilizing local maps from single indi-
vidual rovers, are shown in 4(b)-(d). The merged traversability map
that combines maps collected from all the rovers is presented in
4(e). Colors represent occupancy values, with black representing
unknown, darker gray representing free, and light gray represent-
ing occupied. The merged traversability map contains only a single
layer; each cell assumes values unknown, free, and occupied, like
the local traversability map.

CADRE’smapping architecture [11] results in significantly higher
resolution information for areas closer to the rovers’ paths. This
crucial feature is leveraged by the merging policy, described next.



(a) (b) (c) (d) (e)
Figure 4: Map merging. Image (a) shows the JPL clean room where the maps were collected. In images (b)-(e), colors indicate
occupancy values, with black representing UNKNOWN, darker gray representing FREE, and light gray representing OCCUPIED.
Images (b)-(d) depict merged maps from individual agents, while image (e) shows the combined map in the leader.

5.1 Map Merging
The merging policy determines how local traversability maps are
integrated into a single map. The primary challenges involve rec-
onciling divergent information, where two or more layers of the
same traversability maps or different traversability maps present
conflicting values for the same region.

5.1.1 Map Merging Challenges We have identified three main
causes in which the same region is labeled with different traversabil-
ity values in different local maps:

(a) The first cause is inherent in the multi-size, multi-resolution
structure of the map. Layers with varying resolutions may
assign different values to the same region, namely, lower-
resolution maps attribute a single value to regions that are
covered by multiple cells in higher-resolution maps.

(b) The second cause involves rovers appearing within another
rover’s field of view. Since rovers do not directly share their
locations with each other in real time [4], they cannot dif-
ferentiate between rocks, craters, and other rovers in their
field of view, leading to the inclusion of the latter in the
local traversability maps as obstacles. Although temporarily
adding the rover as an obstacle is expected behavior, this
information may persist in the map if a rover does not spend
sufficient time observing a region until the other rover has
moved. An example of a rover marked as an obstacle in a
map is illustrated in Figure 5. In the top row, the left image
shows that rover 1 in rover 2’s camera view, and on the right,
an obstacle is added to the map (shown as the magenta clus-
ter). In the second-row images, the obstacle is removed from
the maps after rover 1 has moved out of the field of view of
rover 2.

(c) The third cause is the appearance of phantom obstacles.
These are false-positive obstacles generated by the local
mapping components (such as caused by pose or extrinsic
calibration issues, or data gaps in the inertial measurement
unit [IMU] data) and are added to the maps of individual
rovers. Since these are not actual obstacles, they will not
appear in the local traversability maps of any other rover
covering the same area, leading to conflicts regarding which
traversability value should be assigned to those map regions.
This issue is illustrated in Figure 6. In the top row, a small
cluster represents rover 2 as an obstacle in the map, and no

other obstacles are visible in the camera view. In the second
row, a large phantom obstacle is added to the map, which
does not correspond to any obstacle the real scene. After a
while, as the robot collects more local traversability maps,
the older maps with the obstacle are replaced with new ones
that do not contain the phantom obstacle. Additionally, the
cluster representing the real rover 1 as an obstacle has disap-
peared since rover 1 is no longer in the field of view of rover
2.

Issue (a) will be resolved by the merging policy, which places
more trust in high-resolution information than in lower-resolution
information. Both of issues (b) and (c) can be resolved by subsequent
maps if the region with obstacles remains within the rover’s field of
view long enough to acquire new maps. This mitigation can happen
when the problem generating the phantom obstacles is resolved or
when the rover marked as an obstacle has moved. Importantly, the
successful resolution of these issues relies on the condition that the
updated maps are shared with the team.

5.1.2 Map Merging Policy Our merging policy is formulated on
two primary assumptions. The first assumption is that high-resolution
information is more accurate than data at lower resolutions. Given
that the range error of stereo reconstruction scales with distance,
and since the local traversability map is robocentric, the resolution
is proportional to the increasing range error. The second assumption
is that newer information at the same resolution is more accurate
than older data, which helps remove other rovers’s footprints and
phantom obstacles.

Consider 𝑣𝑡 and 𝑣𝑡 ′ , where time 𝑡 ′ > 𝑡 , as potential values for
the same cell in a map; the resulting value 𝑣𝑟 in the merged map is
defined as:

𝑣𝑟 =


𝑣𝑡 ′ if 𝑣𝑡 = unknown or 𝑣𝑡 = 𝑣 ′𝑡
𝑣𝑡 ′ if 𝑣𝑡 ′ has the same or higher resolution than 𝑣𝑡

𝑣𝑡 if 𝑣𝑡 has higher resolution than 𝑣𝑡 ′

(1)

This policy yields the following important behavior:

• If a region has been marked as an obstacle at time 𝑡 but is
free at time 𝑡 ′ > 𝑡 at the same or higher resolution, we mark
it as free. This allows us to clear obstacles that get cleared in
newer maps (e.g., rover footprints and phantom obstacles).



Figure 5: Rover within the field of view of another rover.
The top row of images shows how one rover is marked as
an obstacle in the local traversability map of another robot
(magenta). In the second row of images, the obstacle is cleared
after the robot leaves the field of view. The third row shows
that the obstacle is cleared from the merged map after new
local maps are received; the bottom row shows the obstacle
been partially cleared using knowledge of the robots’ paths.

• If a region has been marked as free at a lower resolution, but
it is marked as an obstacle at a higher resolution (even at
an older time), we conservatively mark it as an obstacle.

Additionally, we mark the footprint of all rovers’ past poses
(which are stored in MoonDB) as free space. If a rover has safely
passed through a location, even if MoonDB marked the area as an
obstacle (e.g., because the rover was observed and labeled as an
obstacle by another rover), the location is marked as traversable
space once pose information is synchronized.

Figure 5, in the third image-row, and Figure 6, in the bottom
image-row, show comparisons between the outcomes (left images)

Figure 6: Phantom obstacles in maps. The top three rows
show the overlaid local traversability maps from the two
robots (i.e., the inputs to MoonDB) at three consecutive time
steps. The top-left image in the first row displays rover 2 as
an obstacle (magenta and cyan). The second row reveals a
large “phantom obstacle”, likely caused by a noisy estimate
of rover 1’s attitude. In the third row, most of the phantom
obstacle is cleared from local traversability maps as the ro-
bot’s attitude estimate is corrected. In the bottom-left image,
we observe a merged map with a conservative policy that
only considers resolution (but not time) in its logic. Despite
being cleared in the local maps, the phantom obstacle per-
sists in the merged map. In the bottom-right image, both
resolution and timestamp are considered in the merge policy,
in accordance with Eq. (1). Including the timestamp allows
the robots to reject older, inaccurate information, clearing
most of the phantom obstacle.



of a very conservative merging policy, where any obstacle placed in
the map persists without considering time and resolution, and the
merged map (right images) generated by the policy described above.
The presence and absence of the obstacles, in the left and in the
right merged maps, respectively, are clearly evident and highlighted
with a dashed square in each merged map.

In the bottom images of Figure 5, the red path represents the
trace of the rover’s movement, referred to as the rover footprint.
This path is converted into a free path in the merged map, based
on the rover having safely passed through it. Using the previously
mentioned conservative merging policy, the three images represent
merged local traversability maps. Notably, an obstacle present in
the left image is cleared in the right image by applying the step
to remove the rover’s footprint, which is shown in white in the
middle image. This additional step ensures that, even if the rover’s
field of view shifts before new data arrives to clear an ephemeral
obstacle, those obstacles can still be removed.

5.2 Pose Graph Optimization
MoonDB is designed for integration with a Pose Graph Optimiza-
tion (PGO) module, described in [2]. The PGO module builds a
graph where rovers’ poses, recorded at prescribed intervals that
are synchronized across all robots, are represented as nodes; vi-
sual inertial odometry (VIO) measurements connect poses collected
by the same robot; and range measurements collected through
ultra-wide-band (UWB) radios connect poses collected by different
robots at the same time. VIO measurements and UWB ranges are
collected on each rover, stored in MoonDB, and synchronized to the
leader. Whenever a local map is stored in MoonDB, a corresponding
PGO node is created. The pose of the map in the global frame is
recorded through two transforms: one from the global frame to
the robot’s pose (represented by the PGO node), and another from
the robot’s pose to the map origin (which is determined by the
mapping module, and is not altered by PGO). The PGO module
periodically recomputes the set of past and current robot poses that
maximizes the likelihood of the observed VIO and UWB measure-
ments. When a rover pose node is modified by PGO, the updated
pose is sent to MoonDB, which, in turn, updates the location of
the map corresponding to that node (if any). This approach allows
maps collected by multiple agents to be reconciled: in particular,
incorporating UWB range measurements is critical to counter drift
between individual robots’ pose estimates, which would otherwise
create multiple copies of the same obstacle whenever an obstacle is
observed by multiple robots.

5.3 OpenGL-accelerated map merging
The map merging policy described in Section 5.1.2 is implemented
in OpenGL, which allows the operation to take advantage of GPU
and multi-core CPU acceleration. Individual maps are represented
as monochromatic textures. A vertex shader computes the location
of the maps in the world frame based on the location, orienta-
tion, and size of the map. A custom fragment shader then imple-
ments the map merging policy described in Equation (1). Maps
are sorted by resolution and (for a given resolution) by time of
creation before being processed by the shaders; this way, the frag-
ment shader can implement the operations in Equation (1) with no
explicit knowledge of time or resolution, relying solely on ordering

of the maps. Figure 7 compares the performance of the OpenGL-
accelerated implementation with a naive map merging policy. The
GPU-accelerated implementation results in an order-of-magnitude
speedup compared to a naive CPU implementation when merging
100 or more maps; even when executed on a CPU, the OpenGL-
accelerated policy retains a five-to-tenfold advantage compared to
the naive implementation.

Figure 7: Performance of OpenGL-accelerated map merging
compared to a naive CPU implementation.

6 Conclusions and Future Work
We introduced MoonDB, a new distributed database for storage,
sharing, and merging of key and mission-critical data in multi-robot
systems. MoonDB is designed to store state information from multi-
ple robots; synchronize it to other agents over intermittent commu-
nication links with comparatively low bandwidth; and efficiently
merge mapping information from multiple robots, integrating with
pose graph optimization algorithms and handling noisy maps and
other robots’ footprints through an ad-hoc merging policy that is
amenable to GPU acceleration. Tests on CADRE flight hardware
and engineering models show that MoonDB performs well on em-
bedded flight hardware, including low-bandwith communication
links; is able to handle noisy mapping information produced in field
tests; and, overall, successfully addresses the challenge of multi-
agent, communication-aware information sharing for the upcoming
CADRE lunar mission. Alongside the upcoming CADRE Mission
deployment, our current emphasis is on experimentally testing and
evaluating MoonDB across diverse environments and configura-
tions (e.g., dynamically switching roles or disabling a rover), while
also conducting simulated stress tests. Looking further ahead, our
goal is to enhance the system’s versatility and scalability, as well
as integrate it with ROS (Robot Operating System).

Acknowledgments
The research was carried out at the Jet Propulsion Laboratory, Cali-
fornia Institute of Technology, under a contract with the National
Aeronautics and Space Administration (80NM0018D0004). The au-
thors thank all the staff at the Jet Propulsion Laboratory working
on CADRE for their contributions to the work described in this
paper. The authors also acknowledge the contributions to CADRE
by the various partners, such as Motiv Space Systems, SolAero, and
Dr. Laura Remond and her students at Clemson University.



References
[1] Keenan Albee, Sriramya Bhamidipati, Joshua Vander Hook, and Federico Rossi.

2024. Lunar Leader: Persistent, Optimal Leader Election for Multi-Agent Explo-
ration Teams. In International Workshop on Autonomous Agents and Multi-Agent
Systems for Space Applications (MASSpace). IEEE, Auckland, NZ. submitted.

[2] Elizabeth R. Boroson, Robert Hewitt, Nora Ayanian, and Jean-Pierre de la Croix.
2020. Inter-Robot Range Measurements in Pose Graph Optimization. In 2020
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 4806–
4813. https://doi.org/10.1109/IROS45743.2020.9341227

[3] Gerasimos Damigos, Nikolaos Stathoulopoulos, Anton Koval, Tore Lindgren, and
George Nikolakopoulos. 2024. Communication-Aware Control of Large Data
Transmissions via Centralized Cognition and 5G Networks for Multi-Robot Map
merging. Journal of Intelligent & Robotic Systems 110, 1 (2024), 22.

[4] Jean-Pierre de la Croix, Federico Rossi, Roland Brockers, Dustin Aguilar, Keenan
Albee, Elizabeth Boroson, Abhishek Cauligi, Jeff Delaune, Robert Hewitt, Dima
Kogan, Grace Lim, Benjamin Morrell, Yashwanth Nakka, Viet Nguyen, Pedro
Proenca, Gregg Rabideau, Joseph Russino, Maira Saboia, Guy Zohar, and Subha
Comandur. 2024. Multi-Agent Autonomy for Space Exploration on the CADRE
Lunar Technology Demonstration. In 2024 IEEE Aerospace Conference. IEEE, 1–12.

[5] Game Changing Development. 2020. Cooperative Autonomous Distributed
Robotic Exploration. Retrieved Jan 18, 2024 from https://www.nasa.gov/
cooperative-autonomous-distributed-robotic-exploration-cadre/

[6] Bing-Jui Ho, Paloma Sodhi, Pedro Teixeira, Ming Hsiao, Tushar Kusnur, and
Michael Kaess. 2018. Virtual occupancy grid map for submap-based pose graph

SLAM and planning in 3D environments. In 2018 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS). IEEE, 2175–2182.

[7] Jiří Hörner. 2016. Map-merging for multi-robot system. Bachelor’s thesis. Charles
University in Prague, Faculty of Mathematics and Physics, Prague. https://is.
cuni.cz/webapps/zzp/detail/174125/

[8] Sharan Nayak, Federico Rossi, Grace Lim, Michael Otte, and Jean-Pierre de la
Croix. 2024. Multi-Robot Exploration for the CADRE Mission. (2024). submitted.

[9] Maira Saboia, Lillian Clark, Vivek Thangavelu, Jeffrey A Edlund, Kyohei Otsu,
Gustavo J Correa, Vivek Shankar Varadharajan, Angel Santamaria-Navarro,
Thomas Touma, Amanda Bouman, et al. 2022. Achord: Communication-aware
multi-robot coordination with intermittent connectivity. IEEE Robotics and Au-
tomation Letters 7, 4 (2022), 10184–10191.

[10] Pascal Schoppmann, Pedro F Proença, Jeff Delaune, Michael Pantic, Timo Hinz-
mann, Larry Matthies, Roland Siegwart, and Roland Brockers. 2021. Multi-
resolution elevation mapping and safe landing site detection with applications
to planetary rotorcraft. In 2021 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 1990–1997.

[11] Lennart Werner, Pedro Proenca, Andreas Nuechter, and Roland Brockers. 2024.
Covariance Based Terrain Mapping for Autonomous Mobile Robots. In Proc. IEEE
Conf. on Robotics and Automation. IEEE, Yokohama, Japan. In Press.

[12] Zhi Yan, Luc Fabresse, Jannik Laval, and Noury Bouraqadi. 2014. Team Size
Optimization forMulti-robot Exploration. In In Proceedings of the 4th International
Conference on Simulation, Modeling, and Programming for Autonomous Robots
(SIMPAR 2014). Bergamo, Italy, 438–449.

https://doi.org/10.1109/IROS45743.2020.9341227
https://www.nasa.gov/cooperative-autonomous-distributed-robotic-exploration-cadre/
https://www.nasa.gov/cooperative-autonomous-distributed-robotic-exploration-cadre/
https://is.cuni.cz/webapps/zzp/detail/174125/
https://is.cuni.cz/webapps/zzp/detail/174125/

	Abstract
	1 Introduction
	1.1 Related Work
	1.2 Contributions
	1.3 Organization

	2 Problem Formulation
	3 Data Storage
	4 Data Distribution
	5 Distributed Mapping
	5.1 Map Merging
	5.2 Pose Graph Optimization
	5.3 OpenGL-accelerated map merging

	6 Conclusions and Future Work
	Acknowledgments
	References

