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ABSTRACT

Multi-agent exploration teams often benefit from election of
a single leader agent to simplify autonomous operations. We
discuss distributed leader election (DLE) in the context of the
Cooperative Autonomous Distributed Robotic Exploration
(CADRE) lunar rover mission–the first fully autonomous
multi-agent robotic space mission. DLE is used to select a
central planning robot whose role is to receive updated sen-
sor information and to disseminate plans. However, existing
algorithms present a number of a shortcomings in the context
of practical hardware deployment. These embedded systems
pose unique challenges such as limited communication band-
width, possible network partitions, imprecise timing, limited
computational resources, and changing conditions for the opti-
mal leader. This combination of challenges necessitates a DLE
algorithm that provides additional robustness to many as-
sumptions of the prior literature. An algorithm built around
the Gallager-Humblet-Spira (GHS) algorithm is proposed
that can perform leader election despite the aforementioned
hardware complications in a persistent fashion where agents
might exit, reenter, or change their suitability to be leader.
The proposed algorithm is demonstrated in CADRE’s four-
agent setting, using CADRE’s flight software implementation
of the algorithm. The necessary algorithmic adaptations are
detailed and a simulation case study is provided.
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Figure 1: Multi-agent exploration systems like the CADRE
lunar rovers depicted above often rely on electing a unique
leader to perform decision-making. Practical complications,
like dropout and clock drift, hinder leader election.
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1 INTRODUCTION

Multi-agent robotic operations frequently require a leader
agent to reduce distributed coordination to single-agent decision-
making. The Cooperative Autonomous Distributed Robotic
Exploration (CADRE) mission [1] is a technology demon-
strator that follows a similar approach, relying on a single,
unique elected leader for autonomous operation. The benefits
of multi-agent systems like CADRE for space exploration
are numerous, including increased robustness, fault tolerance,
redundancy, and the ability to perform multi-point simul-
taneous measurements. The CADRE mission consists of a
number of small, low-cost, and fully autonomous rovers, each
equipped with a suite of scientific instruments. The rovers are
intended to explore the lunar surface and drive in formation,
under coordination of a unique leader agent.



CADRE’s autonomy is supported by a planning system
organized by the leader agent. The leader agent is responsible
for receiving sensor data from the other agents and generating
and disseminating plans—this is a resource-heavy role (e.g.,
power, heat, and computational resources). An unfit leader
can cause all agents to be unproductive for an operational
cycle. It is desirable for the leader to shift based on available
suitability and possible connectivity changes, such that the
current leader is fit for efficient operation for a significant
duration. Relying on a ground operator to determine a leader
agent can be cumbersome or might be impossible in situ-
ations with denied communications. This necessitates an
automated, onboard leader election module that performs
recurring selection of the most suitable agent as the leader.

The algorithm proposed herein addresses the DLE problem
in such a situation, where various assumptions of common
DLE algorithms are distorted on hardware or require modifi-
cation for persistent operation. The proposed solution begins
with the well-known Gallager-Humblet-Spira (GHS) algo-
rithm. We proceed by (1) creating spanning trees (ST) for
the (possibly disconnected) graph of agents; (2) selecting the
unique root of the ST to receive the resource information
from each node; (3) using the root node (“the appointer”)
to select the leader based on the resource information; and
(4) disseminating the updated leader. This work’s primary
contributions are:

● The addition of periodic reelection to accommodate
shifting network connectivity (such as loss of agents or
bifurcation of the network), easing some of the limita-
tions of single-run GHS.
● Introduction of various practical improvements for

hardware concerns such as clock drift and rate-driven
timing.
● Composition of the above approach and verification

within a spaceflight robotics software framework.

The rest of the paper is outlined as follows: Section 2 intro-
duces related DLE literature; Section 3 formalizes the prob-
lem statement; Section 4 discusses the proposed approach;
Section 5 demonstrates a four-agent case study result; and
Section 6 concludes.

2 RELATED WORK

Leader election in the multi-agent systems literature divides
by the definition of “leader” and the assumptions made about
the system. Population protocol models assume many agents
with extremely limited memory and computation that can
only interact with a randomly chosen neighbor at any time
[3]. Remarkably, most classical algorithms from distributed
systems can be realized on such models, including leader
election [2]. However, algorithms designed for such models
rely on assumptions that are not relevant to an embedded ex-
ploration robotic system, such as nondeterministic interaction
patterns with other agents.

Similarly, literature on “flocking” or “swarms” defines a
leader not by identifier or fitness for a purpose but as taking

the lead position in a formation. It is again common to assume

robots have a majority of the following limitations: no unique
identification, no common coordinate frame, no means of
synchronous communication (or, often, any communication
at all), no memory, no shared clock, and no agreement on
the “size” of the reference frame [6, 9]. The selection of a
“leader” in this setting is done by sensing the motion of
neighbors and choosing velocity so that the global collective
moves in unison; this is beyond the use case needed for many
embedded, distributed multi-agent systems.

A third category of literature is that of “self-stabilizing
systems” [17]. These systems are designed to recover from
any initial state to a desired state, and are often used in the
context of distributed systems. A classic leader election result
from Dolev et al. [10, 11] shows that in uniform networks
(those where agents have no unique identifier) of shared-
memory processors (those with no message passing cost),
a leader can be elected with a limited amount of internal
state used for book-keeping. The undesirable aspect of these
algorithms is that they are not deterministic, and may require
a large number of messages to be passed, which is a concern
for multi-robot systems.

Finally, research in “MANET” (mobile ad-hoc networks)
is relevant, with multi-phase algorithms of particular interest.
These techniques commonly find clusters of nodes, elect a
leader within the cluster, then join leaders in a cleaner topol-
ogy like rings on which higher-level protocols can be built [7].
However, for less than a few dozen connected agents, simpler
algorithms exhibit faster convergence.

Our system model is close to the classical “distributed sys-
tem” model, in which nodes have identifiers and bidirectional
communication graphs, and message-passing is allowed, even
if the “distributed” nature means that nodes are only aware
of their local neighbors. This is the model of Lynch [15] and
the leader election problem is well-studied in this context. As
noted in [4], the leader election problem on these systems is
reducible to finding a spanning tree, because the “root” of
the tree is the leader. This is a common first step, and the
basis is often the “GHS” algorithm [12] used in this work.

Related to leader election is consensus, in which all nodes
must agree on a value. This is a more general problem than
leader election. The classic Paxos algorithm [14], and the
more recent Raft algorithm [16] are designed to ensure a
consistent ledger of transactions among all nodes. One such
transaction could be the election of a leader. Paxos is no-
table for its complexity; it is also designed to have a large
number of nodes, which are separated into groups, and each
group provides redundancy. For small numbers of agents,
the complexity of Paxos is not justifiable given the limited
available redundancy. Raft is a more recent algorithm, and
is algorithmically simpler than Paxos. However, Raft fails
when there are fewer than three nodes. It is desirable for
systems like CADRE to be able to operate with potentially
small disconnected subsets of agents. This was addressed in
[8], but a distributed ledger adds complexity and increases
message passing overhead. These algorithms are designed for
highly performant datacenters, and therefore are not suited
for the leader election problem.



Finally, a rich body of work exists on “security,” usually
using Byzantine fault-tolerant algorithms [18], often in the
context of mobile cellular networks. These are not considered
in this work, since all nodes are assumed to be non-adversarial.
Erroneous sensor data, for example, is not considered a secu-
rity threat, and is handled by other systems.

3 PROBLEM STATEMENT

A leader election submodule is desired in order to designate
a unique, agreed-upon leader among a group of distributed
agents, 𝒜 ∶≙ {𝑛1, 𝑛2, . . . , 𝑛p}, where 𝑝 denotes the total num-
ber of agents. The members of 𝒜 constitute a set of nodes
that may communicate with one another using a list of outgo-
ing edges, 𝑒i,j forming a communication graph, 𝒢 ∶≙ {𝒜,ℰ},
where ℰ is the set of edges between agents (illustrated in the
left side of Figure 3). It is assumed that edges are bidirec-
tional (if you can communicate with an agent, that agent
can also communicate with you); the graph is not neces-
sarily connected (agents may form subgraphs). Each agent
also has a set of 𝑚 health metrics, which are assumed to be

independent of each other hi ∶≙ )︀ℎi,1, ℎi,2, . . . , ℎi,m⌈︀
⊺
. It is

desired that the leader election module output a leader that
is optimal with respect to a weighted combination of these
health metrics,

𝐽
∗ ≙min

i
𝐽i, where 𝐽i ≙ Ð

⊺
i hi and

m

∑
j

Ði,j ≙ 1 (1)

which defines an agent’s suitability to be leader.1

We assume a message-passing communication architecture,
where messages arrive atomically and with guaranteed and
possibly asynchronous delivery. Dropping of duplicates and
message ordering is assumed to be handled at the network
layer, using e.g., TCP as the underlying message passing mech-
anism. A synchronized clock is assumed, with reasonably

small2 time synchronization error between agents, Ót. It is
desired that the system tolerate common complications that
occur in practice: communication dropout (whereby an edge
𝑒i,j disappears) and loss of exact synchronization between
system clocks for timed reelection (Ót ≠ 0).

3.1 Assumptions on G and the Network

As mentioned in Section 1, the GHS algorithm is used to
create the spanning tree and create a unique initial leader.
The GHS algorithm has a number of assumptions that are
commonly made in asynchronous distributed message-passing
systems, which are woven into the problem statement to form
a “well-behaved” set of agents:

● 𝒢 is undirected.

1A simple linear combination of health metrics is demonstrated to aid
in interpretability of leader selection. However, note that the leader
election module is not limited to this cost function and can minimize
across any desired non-linear combination of health metrics to define

the optimal leader.
2“Reasonably small” is defined as δt << Δreelect, given in Section 4.

● Pairs of nodes, if connected, agree on the symmetric
edge weight between them, 𝑤i,j ≙ 𝑤j,i.
● Edge weights are unique,
{𝑤i,j , 𝑤j,i} ≠ {𝑤l,m, 𝑤m,l},∀𝑖 ≠ 𝑙, 𝑗 ≠𝑚.
● At least one node, 𝑛0, wakes up at the start of the

algorithm, and all others nodes queue messages (“lis-
tening”) after 𝑛0 wakes up.
● Received messages, ℳi, are queued (FIFO), using 𝒬i.
● ℳi are delivered eventually, meaning finite delay.

An important assumption is not made; 𝒢 may not be
connected. This means that disconnected subgraphs (network
partitions) might exist. In practice, partitions can occur for
a number of reasons, including agent failure, wakeup failure,
or poor communication. It is assumed that if a disconnected
subgraph exists, instead of declaring failure it is preferable
to elect a unique leader of each individual subgraph.

4 METHODS

The leader election submodule fits within a larger autonomy
stack as shown in Figure 2 (a), outlining the leader election
subsystem’s connection to other major processes and the
order of execution of the algorithm. Ultimately, the leader
election submodule is responsible for creating a spanning tree
of the agents and electing a leader for each spanning tree
based on the state of the agents, as specified in Section 3.
The leader election subsystem runs an identical process on
each agent. An inter-agent message-passing layer provides
ordered delivery of messages, ℳi, which may be placed on
an internal queue, 𝒬i, on each agent. Agents may also query
for a list of current neighbors (based on valid edges ℰi), and
health metrics, hi. Upon completion, the subsystem provides
a broadcast of the current leader to other processes, such as
an autonomy manager as in Figure 2 (a).

The solution approach performs optimal leader election in
two stages, outlined in Figure 2 (b). First, GHS is run on 𝒢
to produce a unique root, called the “appointer,” and a ST.
Next, the appointer broadcasts a request for health metric

information, which is convergecast back to the appointer.3

Upon receipt of all children, the appointer sends out a request
to change the leader; upon leader change, each agent relays
the leader change to listening processes. This second stage is
referred to as leader selection, since a leader is chosen with
intent rather than by coincidence as in the first stage.

At each agent the leader change is communicated by the
leader election module to an autonomy manager. The au-
tonomy manager at the previously elected leader makes a
decision (between allowing for completion or terminating) for
each ongoing task based on its remaining duration and criti-
cality. After the autonomy manager at the previous leader
terminates, the autonomy manager at the newly assigned
leader starts generating new plans for the multi-agent team
of its subgraph.

3Note that convergecast is the inverse of a broadcast in a message-
passing system, i.e., instead of a message propagating down from a
single root to all nodes, data is collected from outlying nodes through

a direct spanning tree to the root.



Numerous complications arise that bend the assumptions
of Section 3, which are detailed in Section 4.3. A few notable
modifications are required to ensure algorithm convergence:
(1) timed reelections; (2) a message-passing pause known as
the quiescent period to account for possible clock drift during
reelection; and (3) a tick-driven query for stepping forward
message processing within a single-threaded environment.
The leader selection algorithm itself is depicted in Figure 3,
and is outlined in Sections 4.1 and 4.2.

Figure 2: (a) shows a systems diagram of the leader elec-
tion process on each agent (green) which communicates with
a message-passing layer (comms) to pass messages between
agents and convey a leader to an autonomy manager. (b)
shows state transistions of each leader election process syn-
chronizing an initial election round, followed by persistent re-
election cycles following Figure 3. A leader change restarts
leader-dependent processes on each agent, such as those of an
autonomy manager.

4.1 Stage 1: Appointer Election

The algorithm is built around GHS, which provides: (1) a

spanning tree4, in the form of a list of ST-marked edges for
each agent; (2) a unique, agreed-upon root of the final level
constructed by GHS. (1) provides a data-efficient method
of communicating with the agent graph, while (2) provides

4Note that GHS provides a minimum spannning tree. However, in our
case where the weights used are inconsequential, such as agent ID, we

simply refer to the tree as a spanning tree.

the requisite consensus to make single-agent decisions for the
entire agent graph.

While a detailed analysis and accompanying proofs of
GHS’ convergence guarantees can be found in [13] and [15], a
cursory summary is also provided here. ∀𝑛i ∈ 𝒜 a state 𝑠i ∶≙
{𝑙i, 𝑘i, 𝑚𝑤i} is defined where 𝑙i is a root, 𝑘i is a “level,” and
𝑚𝑤i is a “minimum weight outgoing edge,” also referred to
as a MWOE. Each agent receives ℰi, creating (a) of Figure 3.
Note that agents do not have global knowledge of connections,
only local knowledge of connected neighbors. Given a connec-
tivity graph 𝒢 among 𝒜, each agent initializes its 𝑠i, as in 3
(b), forming an initial “component,” 𝐶i, marked with 𝑙i ≙ 0.
This is the initialization of GHS. An initial SRCH message is
sent on each 𝑛i to all 𝑒i,j ∈ ℰi, initiating the algorithm. The
algorithm proceeds in rounds, as in Figure 3 (c), generating
and sending messages in response to those received on the
queue 𝒬i. There are a total of seven possible messages, fully
detailed in [13], that mainly consist of probing neighbors
for their 𝑠i and determining their status of being within the
same 𝐶i. Merge and absorb operations either join 𝐶i along
a shared MWOE, or designate the MWOE and root of an
absorbing 𝐶i, respectively.

Eventually, all of the graph 𝒢 exists as a single 𝐶i with a
common 𝑘i and 𝑙i. At this point, a NOOP message indicates
algorithm convergence—a ST and unique 𝑙i appointer now ex-
ist. In greatly simplified form, the message processing of GHS
is represented by GhsRound of Algorithm 1. Additionally, the
assumptions of Section 3 allow the formation of disconnected
subgraphs. The powerful benefit of this is that one can use
GHS to create multiple spanning trees, and elect a leader
within each. As long as communication is preserved, appointer
election and leader selection will successfully terminate.

4.2 Stage 2: Leader Selection

With an appointer available, (green circle, Figure 3), co-
ordinated selection of a unique, optimal leader can begin.
Returning to Figure 3, (d) begins a query process for the op-
timal 𝐽∗, detailed in Algorithm 1. Agents receive a RecvCost

message broadcast passed down from the appointer, and

then convergecast their locally optimal 𝐽∗i back. Once the
appointer receives responses from all children the optimal 𝑛∗

is determined. A final broadcast of a DeclareLeader message
is made, (e), designating a new leader throughout 𝒢. This
leader is optimal with respect to the weighting of the queried
health metrics, hi.

The ST is leveraged using an additional leader selection
step (Algorithm 1). Note that GHS produces the minimum

spanning tree, with respect to the given unique, symmetric
edge weights. This invites additional useful forms of edge
metric, such as communications speed, distance, or other
useful quantities. However, since this algorithm only requires
a spanning tree (for simple broadcasts) and a unique ini-
tial leader (to coordinate optimal leader decision-making)
a simple metric is used: the agent IDs themselves. There-
fore for agents 𝑛i and 𝑛j , edge weights 𝑤ij ≙ 𝑤ji are simply



Figure 3: Appointer election begins with a connectivity graph 𝒢, shown at left, for which each agent has a set of queryable health
metrics, hi. Leader election runs using a delay-robust periodically rerun version of GHS, producing a ST (red lines) with a
unique “appointer” (green circle). Leader selection is performed agent-wise, with the appointer initiating the final ST broadcast
if a new leader is declared. The result is an optimal leader over 𝒢, shown at right.

Algorithm 1 AppointerElection and LeaderSelection

1: 𝒢 ← {𝒜o,ℰo} ▷ ℰi updated on each agent, 𝑛i

2: 𝑠i ← {𝑖, 0,∞}, ∀𝑖

3: 𝑤i ← 𝑤i,0, ∀𝑖

4: 𝐽i ← based on Eq. (1)
5:

6: ▷ Appointer election, via GHS:
7: while agent 𝑛i is not converged do
8: ReceivefromNeighbors(ℳi) → 𝒬i

9: ℳi, 𝑠i ← GhsRound(𝒬i,ℰi)
10: SendToNeighbors(ℳi)
11: end while
12:

13: ▷ Leader selection:
14: if IsAppointer(𝑛i) then
15: Broadcast(RequestCost)
16: end if
17: while ¬ DeclareLeader received do
18: if type(ℳi) ≙ RequestCost then
19: Broadcast(RequestCost)
20: else if type(ℳi) ≙ RecvCost ∧ [ RecvCost ∀𝑒i,j⨄︁ then

21: 𝐽∗ ←min(𝐽i, min
k∈Children(i)

𝐽k)

22: 𝑛∗ ← getagentID(𝐽∗)
23: if IsAppointer(𝑛i) then
24: Broadcast(DeclareLeader(𝑛∗))
25: else
26: Convergecast(𝑛∗, 𝐽∗)
27: end if
28: end if
29: end while

strcat(𝑖𝑗) ∶ 𝑖 < 𝑗 (e.g., the edge weight is 25 for agents with
IDs 5 and 2).

Accounting for GHS compute based on [13] and adding
in the compute from the leader selection process, the total
time until completion will be 𝑂(𝑁 𝑙𝑜𝑔2𝑁 + 2(𝑁 − 1)). Thus,
given that the leader election submodule requires only a small

number of messages to be exchanged, we can assume that
the communication is completed within each reelection cycle.
As long as communication is completed, appointer election
and leader selection will successfully terminate.

4.3 Ensuring Algorithmic Assumptions:
Reelection and Quiescence

Practical deployments may encounter breaches of the assump-
tions of Section 3. Unique additions make the leader selection
algorithm deployable on hardware that distorts these assump-
tions. The implications of satisfying these assumptions are
discussed here for embedded robotics hardware such as the
CADRE rovers, where deviations might occur, and solutions
are offered via Algorithm 2.

Undirected Graph and Agreed-Upon Edge Weights If using
a physical quantity like communications bandwidth/latency,
the cost to communicate may not be symmetric; a node may
have an easier time hearing than transmitting. Instead, for
these metrics we include an “exchange” phase in the GHS
algorithm, where the two nodes probe each other to determine
the cost of communication. This cost is then exchanged, and
a shared cost is used for the edge. Being distributed, the edge
weights only need to be agreed upon by the two adjacent
nodes, and need not be shared with any other nodes. An
alternative solution is to use agent IDs as in Section 4.2.

Unique Edge Weights – While it is unlikely that two pairs
of nodes will have the exact same cost to communicate, it
is a strict requirement that edge weights are unique for the
correctness of the GHS algorithm. To accommodate this, we
set the edge weights (after probing) to be,

𝑤i,j ≙

shared_weight(𝑎i, 𝑎j) << 16 +max(𝑖, 𝑗) << 8 +min(𝑖, 𝑗),
(2)

where << is the bit shift operator and 16 and 8 clear space
for two bytes of memory to store ordered agent ID. This is a
simple way to ensure that the edge weights are distinct but



Figure 4: Agent queries are performed assuming a hardware-
driven periodic timer. Agents desire reelection at every 𝑘-
th reelection interval (a), but agents might start ahead of or
behind the ground truth clock. Regardless, queries can be
made at the timer frequency 𝑓 , providing a trigger if the 𝑘-th
reelection period has been passed, (b).

consistent for pairs of nodes. Again, using agent IDs as in
Section 4.2 is an alternative simple solution.

Wake Up and Listening – Ideally, the wake up sequence
would be coordinated by a synchronized clock, triggered by
a high rate system query. In practice, this is accommodated
by a hardware rate-driven query that periodically checks
against a system clock that might have drift, Ó𝑡. This process
triggers the first leader election process, and all subsequent
reelection cycles. The problem is illustrated in Figure 4. We
desire reelections at (𝑡− 𝑡epoch)%Δreelect ≙ 0 where Δreelect

is the desired reelection period, and 𝑡epoch is a synchronized
epoch time; that is, 𝑡k,reelect ≙ 𝑡epoch + 𝑘Δreelect, ∀𝑘.

𝑡 can be sampled at some sample frequency, 𝑓 , provided
by what is often known as a rate group in embedded software
frameworks. This leads to an accuracy of, at worst, 1

f
away

from the ground truth reelection period or 2
f

between any set

of two agents. For wakeup, this means that agents may not
be perfectly synchronized, Figure 4 (a); however, periodic
queries will eventually get all agents to an initialized, listening
state Figure 4 (b).

Message Delivery: FIFO – This is a requirement imposed
on the network layer. We assume that the network layer is
implemented using e.g., TCP, which provides this guarantee.

Message Delivery: Eventual – Rather than requiring that
messages be delivered in a finite amount of time, we instead
impose a timeout on message delivery, in the form of reelec-
tion, described in the following subsection. When a timeout is
triggered on the 𝑘ith round, all agents stay idle until the next
reelection cycle is triggered, i.e., the 𝑘i+1th round. At every
reelection, the agent graph 𝒢 is reinitialized based on available
neighbors ℰi provided by a communications subsystem.

No Agents Drop During Execution – Typically, a static
communications graph 𝒢 is assumed for the duration of GHS’
execution. However, as noted in Section 1, various practical
reasons can lead to an edge dropping. In some cases, this can
cause GHS to deadlock, such as when awaiting a returned
SRCH message. This is dealt with through periodic reelections,
at reelection rate Δreelect. A strong assumption that 𝑡epoch

Figure 5: Here, agent1 is delayed relative to the ground truth
clock (Ó𝑡1); agent2 is ahead of time (Ó𝑡2), (a). In (b), time-
bounded out-of-sync messages are dealt with by adding a
quiescent period 𝑡q (red), during which messages may be re-
ceived, but are not sent. Messages with old timestamps are
ignored within the quiescent period; successive rounds are in-
dicated by 𝑘.

is synchronized ∀𝑖 between agents is required; as in Figure 5
offsets may occur.

An important additional complication arises for clock drift
Ó𝑡1 and Ó𝑡2 between any two sets of agents, (a) of Figure 5.
Delays due to query rate, clock drift, and message-relaying
time can cause relative drift between when repeated leader
election cycles are triggered. This is problematic because, as
shown in (b), messages from a prior round 𝑘i might enter
the 𝑘i+1th round on another agent, breaking GHS and leader
selection assumptions.

This is dealt with using a quiescent period, 𝑡q , highlighted
in red, during which messages are not sent and are only
queued if a message’s timestamp is in the future. The quies-
cent period, along with the reelection solution and rate-driven
queries are summarized in Algorithm 2. Significantly,

𝑡q >∑
m

𝑡delay,m (3)

that is, the longest possible relative delay is contained
within the quiescent period. This ensures that no matter
how out-of-sync agents become within Ó𝑡1 + Ó𝑡2 < 𝑡q FIFO,
eventual delivery is assured.

5 RESULTS

The resulting algorithm is demonstrated in a four-agent
case study to demonstrate some of its most important fea-
tures: (1) robustness to agent dropout; and (2) optimal
leader changes upon changes to health metrics and network
dropout/reconnection. Subsections 5.1 and 5.2 operate on a
fully-connected agent graph of four agents,

ℰ ∶≙ {𝑒1,2, 𝑒1,3, 𝑒1,4, 𝑒2,1, 𝑒2,3, 𝑒2,4,

𝑒3,1, 𝑒3,2, 𝑒3,4, 𝑒4,1, 𝑒4,2, 𝑒4,3}.

Two equally weighted, normalized health metrics are used:
state of charge ∈ ⋃︁0, 100⨄︁ and CPU temperature ∈ ⋃︁0, 150⨄︁,



Algorithm 2 RobustReelection

1: Start(𝒬i)
2: 𝑡elapsed ← 0
3: 𝑡elapsed,last ← Δreelect

4: for ClockTick do
5: 𝑡elapsed ← (𝑡 − 𝑡epoch)%Δreelect

6: if 𝑡elapsed < 𝑡elapsed,last then
7: if 𝑡elapsed > 𝑡q then
8: ▷ From Algorithm 1:
9: AppointerElection and LeaderSelection

10: else
11: if 𝑡ℳi

> 𝑡 then ▷ Sender agent’s clock ahead
12: 𝒬i ←ℳi ▷ Queue
13: else ▷ Sender agent’s clock behind
14: ∅←ℳi ▷ Drop
15: end if
16: end if
17: end if
18: 𝑡elapsed,last ← 𝑡elapsed
19: end for

in units of percent and Celsius, respectively. The algorithm
is implemented in simulation, running four independent pro-

cesses that are integrated into CADRE’s flight software.5

The implementation used for these results will also be used
to perform persistent leader election on the lunar surface for
the four CADRE lunar rovers.

5.1 Reelection: Robustness to Agent Dropout

In this demonstration, agents are dropped one-by-one, start-
ing with 𝑛4 and progressing through 𝑛3 and 𝑛2. Total mes-
sage counts exchanged are recorded and shown in Figure 6.
The average number of messages exchanged decreases as ⋃︀𝒢⋃︀
shrinks, ultimately reaching zero when agent 𝑛1 becomes the
de facto leader. Initially, state of charge is set to 100% on
𝑛4 and equal on other agents, appointing 𝑛4 as the initial
optimal leader. Leader election, performed persistently after
each agent drop, progresses from 𝑛4 → 𝑛1 → 𝑛1 → 𝑛1. Note
that 𝑛1∶3 have equal health metrics, in which case the ap-
pointer (in this case 𝑛1) is selected as a tiebreaker. Message
counts are inclusive of both messages received during a round
of GHS (stage 1), and during leader selection (stage 2). In
CADRE’s flight software implementation, the leader elec-
tion submodule also assigns additional weight to the leader
selected in the previous reelection cycle, reducing excessive
leader changes.

5.2 Reelection: Optimal Leader Change

A simple experiment is performed for the fully connected
case. The health metrics in Table 1 are specified for four fully-
connected agents. Health scores, 𝐽i, are determined after
normalizing and weighting metrics. Multiple agent dropouts

5CADRE’s flight software is based on F-prime, a free and open-source
flight software framework that is tailored to small-scale systems such
as CubeSats, SmallSats, and instruments, and has been demonstrated
on the Ingenuity helicopter technology demonstration on Mars [5].

Figure 6: Messages processed by each agent after successive
reelection cycles following the loss of an agent in 𝒢. Note that
this demonstration includes additional message counts for a
Convergecast of each child in LeaderSelection.

and reconnections are performed. The reelection sequence
(without leader persistence) proceeds as anticipated, selecting
the most desirable leader at each reelection, updating ℰi

appropriately at each cycle. Optimal temperature was set to
CPU temperature

∗ ∶≙ 27; optimal state of charge
∗ ∶≙ 100.

𝑛3 was set to near-optimal values, while the other agents had
middling weighted health scores, 𝐽i. Leaders were elected in
the expected order between reelection cycles, with dropouts
and reconnections noted in Table 2.

Table 1: Agent health metric parameters and weighted, nor-
malized health score used for the reelection demonstration.

𝑛1 𝑛2 𝑛3 𝑛4

SoC ⋃︁%⨄︁ 10 50 100 80

Temp ⋃︁𝐶⨄︁ 25 5 25 100

Health ⋃︁𝐽⨄︁ 0.538 0.643 0.988 0.554

Table 2: Leader changes following dropout and reconnection
of agents to 𝒢 over multiple reelection cycles. Note that the
unique leader moves to the best available agent, using 𝐽 .

Agent Change ∅ ⇑𝑛4 ⇑𝑛3 ⇑𝑛2 𝑛4 𝑛3

Leader 3 3 2 1 4 3

6 CONCLUSION

A leader election algorithm that runs persistently and pro-
vides optimal leader selection has been demonstrated. Eas-
ing some of the strong assumptions of GHS, the proposed



approach is a useful addition for embedded multi-agent hard-
ware systems that might suffer from: (1) bounded interagent
clock drift; (2) rate-driven system queries; and (3) commu-
nications dropout. Moreover, the selection process after an
appointer has been declared ensures that periodic reelection
also accounts for shifting health metrics that may modify the
optimal leader. The algorithm also permits election within
disconnected subgraphs, so that divided multi-agent teams
may continue with separate leaders.

Results demonstrated the approach for a simple fully con-
nected four-agent system, which shows reasonable message
traffic for optimal leader election and reelection of a shift-
ing optimal leader when health metrics and the set of con-
nected agents changes. The algorithm will be deployed to
the CADRE lunar rovers launching to the Moon, providing
persistent election that is robust to anticipated hardware
implementation challenges while shifting leaders in response
to on-the-fly conditions like battery state of charge.

While the proposed algorithm has been designed with
the CADRE mission in mind, the algorithm is scalable to
large numbers of agents and is agnostic to its hardware
platform, provided the assumptions of Sections 3 (relaxed
somewhat in Section 4.3) are met. Other multi-agent teams
such as distributed environmental monitoring systems or
search and rescue robots could surely benefit from persistent
election of the most suitable leader under realistic hardware
assumptions.
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