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ABSTRACT
We present the use case of a commercial optical Earth Observing
Satellite (EOS), with the mission of observing areas on the surface of
the planet, and embedding in the on-board architecture the capacity
of producing and executing autonomous plans.

The need to move on-board certain satellite functions derives
from the limitations of the mission plans generated by ground
control stations, and then uploaded to the EOS. Modern EOS appli-
cations include multiple acquisition requests with different degrees
of priority, and need to reason taking into account information
present on-board only (e.g. environment variables, the exact vol-
ume of observation data).

We propose a modular architecture for an autonomous EOS,
where planning and execution deals with the arrival of urgent ac-
quisition requests, and other relevant information, while meeting
several operational requirements from the end-users. The architec-
ture is based on OARA actors and skillsets. We then describe the
model of the planning problem we are facing, and the extension of
the PDDL language it uses.
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1 CONTEXT
Earth Observing Satellites (EOSs) are usually directed from ground
control in order to perform a sequence of observations of some
areas of the Earth surface. However, mission plans built on the
ground by human operators, and then uploaded to the space seg-
ment on a regular basis so that they can be executed while orbiting
around the Earth, yield several undesired outcomes. This is in part
because some information is available on-board only, and because
the models used during planning can not fully project the evolution
of the satellite state and the environment. For instance, the expected
duration of an attitude transition may be under- or overestimated,
resulting in missed data acquisition opportunities that need to be
rescheduled. New generations of commercial EOSs guarantee better
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performances by embedding a certain degree of autonomy in the
on-board architecture.

The presence of clouds impairs target visibility and cannot be
fully predicted well in advance of the mission specification. As a
result, images obtained using valuable satellite resources may be
unusable. In addition, plans can change at any time with urgent
acquisition requests: those requests must be incorporated into the
mission plan with high priority, if necessary cancelling other re-
quests. This requires a rapid response, forcing a revision of the
original acquisition plan without exceeding the limits of storage
and power consumption.

Prediction of cloud cover is critical to the success of satellite
imagery and is at the heart of Dynamic Targeting, a method of
intelligent observation scheduling that uses information from a
look-ahead sensor to identify targets for a satellite’s primary sensor
to observe in advance [4]. The approach has been evaluated for
observations scheduling algorithms, and actually can incorporate
many operational constraints including slewing capability, and
updates utility in repeated observations [14].

Further approaches to cloud detection could leverage recent ad-
vances in on-board cloud detection from satellite imagery, showing
how a convolutional neural network has been integrated into the
OPS-SAT mission [10] and in the Φ−sat mission [12] for classifica-
tion of cloudy images.

Our aim is to meet the needs of end users by providing more
usable data through the use of cloud coverage information and
actual file sizes. We also want to be reactive and integrate the imple-
mentation of urgent requests for orbit slots autonomously into the
acquisition plan. It is not feasible nowadays to completely transfer
these operations to the space segment, due to limited computing
resources, but it is worth taking some decisions on board to reduce
uncertainty by taking advantage of temporal proximity.

The inclusion of computational capabilities on-board satellites
to execute autonomous functions has been explored in numerous
projects and demonstrators. This addresses the obvious environ-
mental and resource challenges of any EOS satellite, which limit
its efficiency in delivering scientific results, and increases its auton-
omy [3, 6, 7, 10, 12].

The Earth Observing Autonomy project considers to use pro-
cessing algorithms on-board to process image data (mainly spec-
tral analysis) to maximise science return. This project embeds the
CASPER and Eagle Eye Mission Planning software to generate mis-
sion plans from observation requests. These systems are part of
a wider prototype that demonstrates the feasibility of performing
several functions autonomously on-board [6].

An on-board planning and execution architecture deployed at
the European Space Agency (ESA) targets this need of autonomy
for the OPS-SAT mission [10]. This architecture, which is similar in



spirit to the one proposed in this paper, integrates a model-based,
domain independent planner within an executive architecture.

Using the information available only on board the EOSs, an
embedded automated planner is expected to generate observation
mission plans in a closed plan/replan loop as the environment
changes or new requests are received from ground control. New
requests for the allocation of orbital slots to fly over desired re-
gions on Earth require an optimisation approach, which has been
shown to be well suited to a Constraint Programming formulation
for exploring different slot allocation alternatives [18]. Also, the
planning process of generating new observation plans to fit orbit
slot exclusivity requests and the state of the environment —which is
not known in advance— requires to be integrated within a compre-
hensive software architecture in charge of orchestrating planning
and execution.

Contemporary on-board software architectures follow a three-
layer design to facilitate design, robustness and extensibility [26]:

(1) A decisional layer in charge of planning and monitoring
spacecraft activity according to the objectives set on ground.

(2) An operational layer in charge of the executing the activity
plan defined in the upper layer with high-level commands.

(3) A functional layer for low-level supervision and control of
the spacecraft subsystems.

The work we present here gets inspiration from [22], but we go
a step forward. First, we propose exploiting on-board cloud cover
observations instead of forecasts made on the ground to anticipate
target visibility with a wide angle camera looking ahead along the
satellite path. Second, the reactor-based architecture with timelines,
derived fromT-REX [19], has been replaced by theOARA actors [15]
and skillsets [16] framework. This framework has proven useful for
robotic applications [1, 2], but it can also be applied to autonomous
space systems too.

In addition to the EOS architecture, we propose a way to tackle
the planning problem for this satellite use case. The type of plan-
ning performed includes hierarchical aspects that depend on the
architecture of the sensors and actuators in the EOS, but also con-
tains temporal elements due to the constraints of observing certain
areas of the planet.

Outline: The next section describes the proposed satellite plat-
form and its on-board architecture. Then, we propose an extension
of the PDDL language to formulate the planning problem for this
satellite use case. We conclude on a discussion on future extensions
of this application.

2 EOS ON-BOARD PLANNING AND
EXECUTION ARCHITECTURE

The proposed satellite architecture has three layers, as depicted in
Figure 1. Namely, a decision layer, a skillset layer and a functional
layer :

(1) The decision layer hosts the mission controller. It is imple-
mented upon OARA actors [15], a framework to develop
decision-making architectures for autonomous agents. The
OARA framework model revolves around the idea of a hi-
erarchy of actors managing goals by decomposition into
Partial Order Plans. The sub-goals in the selected plan are
dispatched to the appropriate child actors and monitored
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Figure 1: A three layer skills-based architecture for autonomy

for execution reports. Plans can be set up to be repaired,
replaced or dropped if a subgoal execution fails, or if a par-
ent actor signals that the current goal is obsolete, i.e. urgent
requests arrive.

(2) The skillset layer defines an abstract interface of the satellite
capabilities via skills [2, 16]: the basic platform behaviours for
autonomous mission execution with planning at the level
of the task. Skills formally define their behaviour, the re-
sources they employ and the inputs they require to run, so
that the skillset layer can continue to operate in the face of
interruptions and abnormal situations at the logic level.

(3) The functional layer implements the on-board control proce-
dures that actually operate the spacecraft, either directly or
trough a skill.

OARA actors and skillsets are built upon the ROS 2 middleware,
as well as the simulated functional layer interface. Note that it is
possible to combine real components with simulated ones, for faster
development and verification, as the physical design doesn’t have
to be finalised before developing the mission control software.

2.1 Requests formulation
The EOS mission goal is to fulfil a set of Programming Requests by
taking images of portions of the Earth surface.

Definition 1 (Programming Reqest (PR)). A Programming

Request (AR) 𝑝𝑟𝑖 is a region of the Earth surface which is required to

be fully covered by observations. It is characterised by:

• a date of deposit 𝑡
𝑑𝑒𝑝

𝑖
,

• a validity period [𝑡𝑠𝑡𝑎𝑟𝑡
𝑖

, 𝑡𝑒𝑛𝑑
𝑖

]
• the area of interest 𝐴𝑂𝐼𝑖
• an urgency flag 𝑢𝑖
• a cloud cover threshold 𝑐𝑚𝑎𝑥 ,

• a maximum viewing angle𝜓𝑚𝑎𝑥

Programming requests can require to cover areas much larger
than the satellite can observe at one time. Therefore, as shown
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Figure 2: Illustration of the requests formulation model. Programming requests (PRs) are divided into acquisition requests
(ARs) that can be observed by the satellite during data take opportunities (DTOs).

in Figure 2, they are decomposed into smaller chunks which can
be photographed individually. The set of all the PRs describing a
mission is denoted P.

Definition 2 (Acqisition Reqest (AR)). An Acquisition Re-

quest (AR) 𝑎𝑟𝑖, 𝑗 is the portion of 𝑝𝑟𝑖 , such that an area of interest

𝐴𝑂𝐼𝑖, 𝑗 ⊆ 𝐴𝑂𝐼𝑖 can be observed in a single satellite image, and for

which the validity period is [𝑡𝑠𝑡𝑎𝑟𝑡
𝑖, 𝑗

, 𝑡𝑒𝑛𝑑
𝑖,𝑗

] ∈ [𝑡𝑠𝑡𝑎𝑟𝑡
𝑖

, 𝑡𝑒𝑛𝑑
𝑖

]. It denotes
the acquisition of a target position inside the PR area of interest.

A programming request is fulfilled by completing all its associ-
ated acquisition requests, covering the complete PR area of interest.
The satellite may require multiple passes to complete a Program-
ming Request.

Definition 3 (Data take opportunity (DTO)). The time win-

dow [𝑡𝑙𝑜𝑤𝑒𝑟 , 𝑡𝑢𝑝𝑝𝑒𝑟 ] during which an acquisition request is valid for

the satellite is called a data acquisition opportunity. It is denoted by

𝑑𝑡𝑜𝑖, 𝑗 for a given acquisition request 𝑎𝑟𝑖, 𝑗 .

Definition 4 (Mission DTOs). The Mission DTOs is the set of the

DTOs corresponding to the PRs the satellite has to complete. It is then

described as the collection of DTOs s.t. {𝑑𝑡𝑜𝑖, 𝑗 | [𝑡𝑙𝑜𝑤𝑒𝑟
𝑖, 𝑗

, 𝑡
𝑢𝑝𝑝𝑒𝑟

𝑖, 𝑗
] ⊆

[𝑡𝑠𝑡𝑎𝑟𝑡
𝑖, 𝑗

, 𝑡𝑒𝑛𝑑
𝑖,𝑗

], for all 𝑎𝑟𝑖, 𝑗 ∈ 𝑝𝑟𝑖 and all 𝑝𝑟𝑖 ∈ P}.
Note that there may be multiple opportunities 𝑘 for any AR as the

satellite passes by the same area while orbiting the Earth.

Finding Mission DTOs is computationally expensive due to the
complexity of Earth’s and satellite orbital dynamics. The calculation
is not feasible on-board, and ground control must specify them.

2.2 Satellite description and functional layer
The satellite we consider, devoted to the observation of the Earth’s
surface, is moving in a low-earth orbit (≈ 500 km) with low inclina-
tion (latitude < 50°) to increase revisits. The satellite is agile, that
is it can rotate forward and backwards in addition to left and right
with respect to its track. We assume a constant mean rotation speed

to compute the duration of pointing actions, but a more accurate
model could be used without invalidating the current design.

The satellite is equipped with two optical systems located nadir:
a narrow field of view camera for observing ground targets and a
wide field of view sensor that serves as a look-ahead camera. The
latter can be positioned to observe the area ahead of the orbit to
detect the presence of clouds or upcoming interesting targets.

Our satellite model simulates energy and memory usage. Bat-
teries power the satellite while solar panels recharge them during
sunlight. Images of the requested targets can be stored and retrieved
from the storage module as required. They will be deleted once
they have been successfully downloaded to the ground station.

The communications module is responsible for managing data
transfer operations between the spacecraft and ground stations.
Payload data can be downloaded when the satellite is in visibility
of dedicated stations. The set of targets to be observed are uploaded
in the form of the mission specification including PRs and Mission
DTOs.

The functional layer has been implemented in the form of a
ROS 2 package that emulates the behaviour of the satellite. Each
subsystem of the spacecraft runs as a ROS 2 node written in the
Python programming language. The aocs emulates attitude and
orbit control, the storage node manages picture and requests stor-
age, the comm node simulates data transfer, the eps node keeps track
of energy consumption and generation and the camera node emu-
lates mimics the behaviour of embedded cameras. Nodes exchange
information by subscribing and publishing data to named buses
called topics. As the purpose of the simulation is to validate the
soundness of a novel EOS planning paradigm, the current satellite
simulator implementation uses simple models that do not emulate
precisely all the functions of an EOS the but capture the overall
behaviour of the spacecraft. The simulation architecture comes
with a supervision graphical user interface, shown in Figure 3, that
displays the state of the satellite.



Figure 3: Screenshot of the satellite simulator supervision
graphical user interface.

2.3 The OARA goal lifecycle model and actors
Goals received by an OARA actor go through a lifecycle state-
machine following the goal reasoning process introduced in [24].

A goal is always in one of the following six decision steps: For-
mulated, Selected, Expanded, Committed, Dispatched and Evaluated.
As illustrated in Figure 5, a goal starts in the Formulated state when
the actor receives it. Then it moves to Selected if it can be attempted,
that is the goal formulation is within the scope of the agent planning
and execution capabilities. Next, the goal goes through a planning
phase, where one or more decompositions in the form of Partial
Order Plans are proposed but only one is picked (Expanded and
Committed states respectively). Then, sub-goals are dispatched to
corresponding actors according to ordering and time constraints.
Once the Dispatched state is reached by the goal, a periodic monitor
function supervises the execution. Upon evaluation, several actions
can be triggered: Continue with the next sub-goal, Repair (commit
to a different plan), Replan (expand the goal again), Defer, (go back
to selection), or Reform if the goal cannot be executed anymore.
Actors can also receive and send a Drop request that cancels the
current goal and drops active sub-goals.

In most cases, a full goal lifecycle is too broad for the application.
As such, OARA offers two lifecycle patterns that are particularly
useful for an autonomous satellite. That is controller actors, and
plan/replan behaviours based on Temporal Partial-Order Schedules
(Timed POS).

Controllers are the actors at the lowest level of the deliberative
architecture. They cannot create sub-goals and delegate them to
other actors, but instead manage one goal execution with a direct
interface to the robot functional layer. The Expand and Commit

transitions do nothing specific, as no decomposition must be com-
puted. Also, the controller cannot process external events but only
reacts to execution reports from lower architectural layers, handled
in the Monitor transition. The sole possible terminal statuses are
then to Finish the goal in case of success, or to Reform it in case of
failure.

Timed POS actors manage plans whose goals are partial-order
scheduled and consider that goals have an optional dispatch time.
They behave as POS actors regarding the precedence checks of
sub-goals, but instead of dispatching immediately, the actors set
up a timer that delays the execution of sub-goals. These actors are

useful for plans that contain time-constrained actions. They can
also handle hybrid plans with timed and not timed sub-goals.

Observers are particular OARA modules, different from actors,
whose purpose is to monitor data exposed by the functional layer
and information produced by actors. Actors can get the current
value of pieces of data as they please and update values for other
actors to use.

2.4 Decision layer architecture for mission
control

The decision layer implements a mission controller using the OARA
framework, generating plans to complete acquisition goals and
supervises the execution.

The on-board decision architecture managing the acquisition
problem is composed of 11 actors and 3 observers. Figure 4 depicts
the hierarchy of actors and their interaction with the skillset layer
and the ground station. More in the details:

The Ground Segment Mission actor encompasses and simulates
the ground segment of the satellite system. It registers the program-
ming requests and computes their decomposition into acquisition
requests and data take opportunities. The PRs and ARs are loaded
into the satellite order book, via the storage observer, alongside the
DTOs. The Ground Segment Mission actor then formulates a goal
to the mission actor that includes the set of DTOs that should be
observed.

The Mission actor manages incoming observation requests. It
also orchestrates the cloud detection, acquisition, and download
actors deciding when to execute them and in which conditions.
It produces an acquisition subgoal based on the requests that can
be safely carried out according to the required maximum cloud
presence and the actual cloud cover in the area as reported by
the AR detector actor. When an urgent request for an orbit slot
is received, the Ground Segment Mission actor drops the current
goal of the Mission actor and revises the mission specification to
incorporate the new request.

The AR detector actor orchestrates cloud detection and deter-
mines which targets are visible or obscured by clouds. This check
is actually done by the Cloud Detector controller, which handles
the cloud camera after being positioned by the Rotate controller.
The visibility status of targets can be accessed through the Mission

observer. The focus of this study is on the architecture and inter-
faces for integrating a cloud detection process into the acquisition
mission, therefore the process is modelled at a coarse level. Cur-
rently, the Cloud Detector controller randomly filters which DTOs
are classified as being covered by clouds.

The Acquisition Planner actor takes as input a set of data take
opportunities and finds a suitable observation plan. To ensure that
urgent requests are included in the plan, non-urgent requests with
conflicting DTOs are ignored. This verification step is carried out
by a Simple Temporal Network (STN) [8], which incorporates all
temporal constraints of the requests and can determine several key
properties in polynomial time, such as the global consistency of the
network [5, 21, 23]. The plan is a temporal sequence of data takes,
expected realisations of data take opportunities. Each data take in
the plan is executed by the Acquisition Timed POS Actor which
formulates rotation and image capturing goals at precise times. The
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Rotate and Image Capture controllers manipulate the satellite AOCS
and the camera payload by activating the appropriate skills. The

Validate controller checks the quality of the acquired image and
updates in the order book the completion state of the associated
AR and PR.

Finally, the Picture Download actor orchestrates payload data
download and formulates goals to the Rotate controller to point
to the ground station and Download controller to perform the sim-
ulated communication. As the download problem has not been
considered yet, the downloading procedure trivially sends all im-
ages back to the ground stations.

3 HIERARCHICAL TEMPORAL PLANNING
FOR EOS

In order to reflect the temporal constraints present in the Acqui-
sition Request schema, we adopt the HDDL 2.1 problem formula-
tion [20], that includes elements of temporal planning borrowed
from PDDL 2.2 [9] besides the usual HDDL formulation for ex-
pressing hierarchical planning problems [13]. Note that the action
definition of this sort of “temporal HDDL” has then beenmodified to
deal with durative-action definition as in PDDL 2.2. The definition
of the temporal effects of the actions remains unchanged in HDDL
2.1. Only the numerical aspects have been removed as our in-house
planner doesn’t manage them yet. These choices are reflected by
the following requirement flags, which are also compatible with
HDDL:



• :durative-actions requires the applied system needs to
support durative actions and temporal ordering constraints
in method definition.

• :duration-inequalities requires the applied systemneeds
to support duration inequalities in durative actions declara-
tion. Implies :durative-actions.

• :timed-initial-literal requires the applied systemneeds
to support initial state with literal that becomes true at a
specified time point. Implies :durative-actions.

Besides, we add the following requirement flags:
• :method-constraints requires the need to support method
decomposition constraints.

3.1 The satellite HDDL 2.1 model
We model our planning problem on the hierarchical satellite do-
main [25], tailored to a planning model that takes in account the
specificities of our observation problem. Besides the requirements
discussed in the previous section, the domain specifies the meth-
ods and actions needed to perform the data takes and the image
capture tasks based on a set of available predicates and functions.
A sample planning problem with several image targets is provided
in Appendix A as well as the corresponding HDDL 2.1 domain.

In this representation, we reuse part of the durative action speci-
fications from the original non-hierarchical PDDL description [17],
namely: turn_to, switch_on, switch_off, and take_image.
Some hierarchical aspects are present in the intended procedure for
taking an image, where an instrument has to be selected, switched
on, and switched off after the image capture1. This is reflected in
the collection of methods available to execute the do_observation,
and activate_instrument tasks.

The camera instrument can be in ON or OFF states and they
must be ON to be used. This can be achieved in two ways: either by
powering on the instrument after powering off an already activated
one (method4) or, if any instrument is powered on, just activating
the desired sensor (method5). Observations can be done with four
alternative methods: method0 activates the sensor, then points to
the target and finally takes the image. method1 and method2 rely
on being already pointing to the right direction and the instrument
being on respectively. method3 assumes everything is set up and
simply taking an image is sufficient to execute the task.

The action specifications have a duration to reflect the warming
up of certain instruments and the time to modify the attitude of the
satellite, and a validity period [𝑡𝑠𝑡𝑎𝑟𝑡 , 𝑡𝑒𝑛𝑑 ] corresponding to the
data take opportunity. Timed initial literals are used to designate the
validity period of each area of interest by making the observable
predicate true or false. Also, the turn-time function returns the
time require to rotate the satellite between image directions but as
the actual computation of this duration is complex, pre-computed
values are given in the problem description.

3.2 Preliminary experiments
A custom-made planner is used inside the acquisition planner ac-
tor. This planning solution uses depth-first search with a bounded
temporal horizon. Given a set of visible DTOs within this horizon,
1Please note that, unlike the original satellite domain, we do not consider instrument
calibration in this model.

Figure 6: The OARA supervision interface displaying the
activation of the satellite decision layer actors.

the objective is to find the optimal sequence of observations the
maximise the number of targets acquired with priority granted
to urgent tasks and abiding by the satellite physical constraints.
Incidentally, the resulting plan minimises energy consumption as
reducing the time passed changing orientations generally allows for
more observations to be done in the same time span. Currently, a
more developed version of a hierarchical temporal planner has been
implemented and parses HDDL 2.1 domains and problems; efforts
are currently being made to develop and improve such planner.

The architecture has been tested with the satellite simulator
depicted in subsection 2.2 and the complete implementation of the
decision layer from subsection 2.4. The Ground Segment Mission
actor has been provided with a list of programming requests as
shown in the Figure 3 as blue markers. The OARA actors in the
decision layer decomposed and executed the tasks as illustrated in
Figure 6. Each segment in the OARA supervision interface denotes
the activation of a particular actor with a colour code corresponding
to the state of the goal e.g. FORMULATED, SELECTED, etc.

4 ONGOING AND FUTUREWORK
We have presented our implementation of the use case of an au-
tonomous optical EarthObserving Satellite using information present
on-board only to plan and execute observation plans. The embed-
ded mission control software architecture, implemented using the
OARA actors and skillsets, integrates, in its observation plan, the
cloud cover maps obtained from a forward-facing camera, and the
arrival of urgent requests. We have proposed the usage of HDDL 2.1,
a temporal extension to HDDL to express temporal constraints,
timed initial literals, and action durations, so to model the planning
problem relative to this use case.

The decision layer based on the OARA framework and supported
by OARA skillsets adds a modular dimension to the architecture by
dissociating the abstract capabilities of the satellite platform from
the actual hardware. This permits to combine real components
with simulated ones, for faster development and verification. This
approach is even more interesting in the development phase, as
the physical design doesn’t have to be finalised before developing



the mission control software. In the future, we expect to be able to
rely on the modularity of the actor-based architecture paradigm to
solve the download planning problem. This problem shares analo-
gies with the acquisition, instead of trivially transmitting all the
images. To do so, the Mission actor would need to be tailored to
set a memory allowance for the Acquisition Planner actor. Now, in
order to produce effective acquisition plans, the Mission controller
filters the planner’s input with the information about cloud cover-
age. Better plans could be produced by exploiting more resource
information that can only be known on-board, like the real volumes
of data embedded in the pictures and the battery level. The usage
of these variables in the planning phase require the numeric fluents
introduced in HDDL 2.1, which were excluded in the first version
of HDDL due to efforts to develop the language and related tools

The introduction of PDDL3 preferences [11] would allow to dis-
tinguish acquisitions qualities at various viewing angles 𝜓 in a
DTO time window by counting the number of times a constraint
expressing an acquisition quality has been violated. However, a
precise cost values according to the customer-specific requirements
is complex to formulate. Preferences could be used as well to distin-
guish potential AR priority levels, solving DTOs conflict and urgent
acquisitions placement. These enhancement of the model should
allow for more fine grained insertions of urgent requests too.

A particular aspect of EOS mission goals is that missed targets
can not be revisited immediately as it takes multiple orbital periods
before flying past the same area of interest. This is critical with
targets located in areas suffering from frequent adverse weather
where valid acquisitions can be elusive. Thus, a constellation of
autonomous satellites, in specific orbit configurations to increase
the frequency of revisits, is required to improve the probability of
acquiring a target. In a changing environment, achieving a com-
mon goal necessitates cooperation between satellites, besides the
individual autonomy. Designing such a system is not trivial as
communication is low-bandwidth and intermittent. Future work
will consider the decision architecture for a satellite within such a
constellation.
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A SATELLITE HDDL 2.1 DOMAIN AND
SAMPLE PROBLEM

1 ( d e f i n e ( domain s a t e l l i t e 2 )
2 ( : r e qu i r emen t s
3 : d u r a t i v e − a c t i o n s
4 : e q u a l i t y
5 : n ega t i v e − p r e c o n d i t i o n s
6 : t yp ing
7 : numeric − f l u e n t s
8 : t imed − i n i t i a l − l i t e r a l s
9 : method− c o n s t r a i n t s
10 : h i e r a r c hy )
11
12 ( : t ype s
13 im a g e _ d i r e c t i o n
14 i n s t r umen t
15 s a t e l l i t e
16 mode
17 )
18
19 ( : p r e d i c a t e s
20 ( on_board ? arg0 − in s t rumen t ? arg1 − s a t e l l i t e

)
21 ( s uppo r t s ? a rg0 − in s t rumen t ? arg1 − mode )
22 ( p o i n t i n g ? arg0 − s a t e l l i t e ? a rg1 −

imag e _ d i r e c t i o n )
23 ( power_ava i l ? a rg0 − s a t e l l i t e )
24 ( power_on ? arg0 − in s t rumen t )
25 ( have_image ? arg0 − imag e _ d i r e c t i o n ? arg1 −

mode )
26 ( o b s e r v a b l e ? a rg0 − imag e _ d i r e c t i o n )
27 )
28
29 ( : f u n c t i o n s
30 ( turn − t ime ? d1 − imag e _ d i r e c t i o n ? d2 −

imag e _ d i r e c t i o n )
31 )
32
33 ( : t a s k do_ob s e r v a t i on
34 : p a r ame te r s ( ? do_d − imag e _ d i r e c t i o n ?do_m −

mode )
35 )
36
37 ( : t a s k a c t i v a t e _ i n s t r umen t
38 : p a r ame te r s ( ? a i _ s − s a t e l l i t e ? a i _ i −

in s t rumen t )
39 )
40
41 ( : method method0
42 : p a r ame te r s ( ? mdoa t t_ t_d_prev −

imag e _ d i r e c t i o n ? mdoa t t _ t _ s − s a t e l l i t e ?
mdoa t t _ t i _ d − imag e _ d i r e c t i o n ? mdo a t t _ t i _ i
− i n s t rumen t ? mdoat t_ t i_m − mode )

43 : t a s k ( do_ob s e r v a t i on ? mdoa t t _ t i _ d ?
mdoat t_ t i_m )

44 : s u b t a s k s ( and

45 ( t a s k 0 ( a c t i v a t e _ i n s t r umen t ? mdoa t t _ t _ s ?
mdo a t t _ t i _ i ) )

46 ( t a s k 1 ( t u rn_ t o ? mdoa t t _ t _ s ? mdoa t t _ t i _ d ?
mdoa t t_ t_d_prev ) )

47 ( t a s k 2 ( take_ image ? mdoa t t _ t _ s ? mdoa t t _ t i _ d
? mdo a t t _ t i _ i ? mdoat t_ t i_m ) )

48 )
49 : o r d e r i n g ( and
50 ( < t a s k 0 t a s k 1 )
51 ( < t a s k 1 t a s k 2 )
52 )
53 : c o n s t r a i n t s ( and
54 ( not (= ? mdoa t t _ t i _ d ? mdoa t t_ t_d_prev ) )
55 )
56 )
57
58 ( : method method1
59 : p a r ame te r s ( ? mdot t_ t_d_prev − imag e _ d i r e c t i o n

? mdo t t _ t _ s − s a t e l l i t e ? mdo t t _ t i _ d −
imag e _ d i r e c t i o n ? mdo t t _ t i _ i − i n s t rumen t ?
mdot t_t i_m − mode )

60 : t a s k ( do_ob s e r v a t i on ? mdo t t _ t i _ d ? mdott_t i_m )
61 : s u b t a s k s ( and
62 ( t a s k 0 ( t u rn_ t o ? mdo t t _ t _ s ? mdo t t _ t i _ d ?

mdot t_ t_d_prev ) )
63 ( t a s k 1 ( take_ image ? mdo t t _ t _ s ? mdo t t _ t i _ d ?

mdo t t _ t i _ i ? mdot t_t i_m ) )
64 )
65 : o r d e r i n g ( and
66 ( < t a s k 0 t a s k 1 )
67 )
68 : c o n s t r a i n t s ( and
69 ( not (= ? mdo t t _ t i _ d ? mdot t_ t_d_prev ) )
70 )
71 )
72
73 ( : method method2
74 : p a r ame te r s ( ? mdoa t_ t i _d − imag e _ d i r e c t i o n ?

mdoa t _ t i _ i − i n s t rumen t ?mdoat_t i_m − mode
? mdoa t _ t i _ s − s a t e l l i t e )

75 : t a s k ( do_ob s e r v a t i on ? mdoa t_ t i _d ?mdoat_t i_m )
76 : s u b t a s k s ( and
77 ( t a s k 0 ( a c t i v a t e _ i n s t r umen t ? mdoa t _ t i _ s ?

mdoa t _ t i _ i ) )
78 ( t a s k 1 ( take_ image ? mdoa t _ t i _ s ? mdoa t_ t i _d ?

mdoa t _ t i _ i ? mdoat_t i_m ) )
79 )
80 : o r d e r i n g ( and
81 ( < t a s k 0 t a s k 1 )
82 )
83 )
84
85 ( : method method3
86 : p a r ame te r s ( ? mdot_ t i_d − imag e _ d i r e c t i o n ?

mdo t _ t i _ i − i n s t rumen t ?mdot_ti_m − mode ?
mdo t_ t i _ s − s a t e l l i t e )

87 : t a s k ( do_ob s e r v a t i on ? mdot_ t i_d ?mdot_ti_m )



88 : s u b t a s k s ( and
89 ( t a s k 0 ( take_ image ? mdo t_ t i _ s ? mdot_ t i_d ?

mdo t _ t i _ i ?mdot_ti_m ) )
90 )
91 )
92
93 ( : method method4
94 : p a r ame te r s ( ? ma i s s a _ a c _ i − in s t rumen t ?

ma i s s a_a c_ s − s a t e l l i t e ? ma i s s a _ s o f _ i −
in s t rumen t )

95 : t a s k ( a c t i v a t e _ i n s t r umen t ? ma i s s a_a c_ s ?
ma i s s a _ a c _ i )

96 : s u b t a s k s ( and
97 ( t a s k 0 ( sw i t c h _ o f f ? ma i s s a _ s o f _ i ?

ma i s s a_a c_ s ) )
98 ( t a s k 1 ( swi tch_on ? ma i s s a _ a c _ i ? ma i s s a_a c_ s )

)
99 )
100 : o r d e r i n g ( and
101 ( < t a s k 0 t a s k 1 )
102 )
103 : c o n s t r a i n t s ( and
104 ( not (= ? ma i s s a _ s o f _ i ? ma i s s a _ a c _ i ) )
105 )
106 )
107
108 ( : method method5
109 : p a r ame te r s ( ? ma i s a _ a c_ i − in s t rumen t ?

ma i sa_ac_s − s a t e l l i t e )
110 : t a s k ( a c t i v a t e _ i n s t r umen t ? ma i sa_ac_s ?

ma i s a _ a c_ i )
111 : s u b t a s k s ( and
112 ( t a s k 0 ( swi tch_on ? ma i s a_a c_ i ? ma i sa_ac_s ) )
113 )
114 )
115
116 ( : d u r a t i v e − a c t i o n t u rn_ t o
117 : p a r ame te r s ( ? t _ s − s a t e l l i t e ? t_d_new −

imag e _ d i r e c t i o n ? t_d_prev −
imag e _ d i r e c t i o n )

118 : d u r a t i o n (= ? du r a t i o n ( turn − t ime ? t_d_new ?
t_d_p rev ) )

119 : c o n d i t i o n ( and
120 ( a t s t a r t ( not (= ? t_d_new ? t_d_prev ) ) )
121 ( a t s t a r t ( p o i n t i n g ? t _ s ? t _d_prev ) )
122 )
123 : e f f e c t ( and
124 ( a t end ( p o i n t i n g ? t _ s ? t_d_new ) )
125 ( a t end ( not ( p o i n t i n g ? t _ s ? t _d_prev ) ) )
126 )
127 )
128
129 ( : d u r a t i v e − a c t i o n swi tch_on
130 : p a r ame te r s ( ? s o _ i − in s t rumen t ? so_s −

s a t e l l i t e )
131 : d u r a t i o n (= ? du r a t i o n 1 )
132 : c o n d i t i o n

133 ( and
134 ( a t s t a r t ( on_board ? s o _ i ? so_s ) )
135 ( a t s t a r t ( power_ava i l ? so_s ) )
136 )
137 : e f f e c t ( and
138 ( a t end ( power_on ? s o _ i ) )
139 ( a t end ( not ( power_ava i l ? so_s ) ) )
140 )
141 )
142
143 ( : d u r a t i v e − a c t i o n sw i t c h _ o f f
144 : p a r ame te r s ( ? s o f _ i − in s t rumen t ? s o f _ s −

s a t e l l i t e )
145 : d u r a t i o n (= ? du r a t i o n 1 )
146 : c o n d i t i o n ( and
147 ( a t s t a r t ( on_board ? s o f _ i ? s o f _ s ) )
148 ( a t s t a r t ( power_on ? s o f _ i ) )
149 )
150 : e f f e c t ( and
151 ( a t end ( not ( power_on ? s o f _ i ) ) )
152 ( a t end ( power_ava i l ? s o f _ s ) )
153 )
154 )
155
156 ( : d u r a t i v e − a c t i o n take_ image
157 : p a r ame te r s ( ? t i _ s − s a t e l l i t e ? t i _ d −

imag e _ d i r e c t i o n ? t i _ i − i n s t rumen t ? t i_m −
mode )

158 : d u r a t i o n (= ? du r a t i o n 2 )
159 : c o n d i t i o n ( and
160 ( over a l l ( o b s e r v a b l e ? t i _ d ) )
161 ( a t s t a r t ( p o i n t i n g ? t i _ s ? t i _ d ) )
162 ( over a l l ( on_board ? t i _ i ? t i _ s ) )
163 ( over a l l ( power_on ? t i _ i ) )
164 ( a t s t a r t ( s uppo r t s ? t i _ i ? t i_m ) )
165 )
166 : e f f e c t ( and
167 ( a t end ( have_image ? t i _ d ? t i_m ) )
168 )
169 )
170 )

Listing 1: The satellite HDDL 2.1 domain

1 ( d e f i n e
2 ( problem sa t 2_p rob l em )
3 ( : domain s a t e l l i t e 2 )
4 ( : o b j e c t s
5 i n s t r umen t 0 − in s t rumen t
6 i n s t r umen t 1 − in s t rumen t
7 s a t e l l i t e 0 − s a t e l l i t e
8 i n f r a r e d 0 − mode
9 s p e c t r o g r aph1 − mode
10 i n f r a r e d 2 − mode
11 s i t e 1 − imag e _ d i r e c t i o n
12 s i t e 2 − imag e _ d i r e c t i o n
13 s i t e 3 − imag e _ d i r e c t i o n



14 s i t e 4 − imag e _ d i r e c t i o n
15 s i t e 5 − imag e _ d i r e c t i o n
16 )
17 ( : htn
18 : p a r ame te r s ( )
19 : s u b t a s k s ( and
20 ( t a s k 0 ( do_ob s e r v a t i on s i t e 2 i n f r a r e d 2 ) )
21 ( t a s k 1 ( do_ob s e r v a t i on s i t e 3 i n f r a r e d 2 ) )
22 ( t a s k 2 ( do_ob s e r v a t i on s i t e 4 i n f r a r e d 0 ) )
23 ( t a s k 3 ( do_ob s e r v a t i on s i t e 5 i n f r a r e d 2 ) )
24 )
25 )
26 ( : i n i t
27 ( s uppo r t s i n s t r umen t 0 i n f r a r e d 2 )
28 ( s uppo r t s i n s t r umen t 0 s p e c t r o g r aph1 )
29 ( s uppo r t s i n s t r umen t 0 i n f r a r e d 0 )
30 ( s uppo r t s i n s t r umen t 1 i n f r a r e d 2 )
31 ( s uppo r t s i n s t r umen t 1 s p e c t r o g r aph1 )
32 ( on_board in s t rumen t 0 s a t e l l i t e 0 )
33 ( on_board in s t rumen t 1 s a t e l l i t e 0 )
34 ( power_ava i l s a t e l l i t e 0 )
35 ( p o i n t i n g s a t e l l i t e 0 s i t e 1 )
36 (= ( turn − t ime s i t e 1 s i t e 2 ) 1 4 9 )
37 (= ( turn − t ime s i t e 1 s i t e 3 ) 5 1 3 )
38 (= ( turn − t ime s i t e 1 s i t e 4 ) 7 0 4 )
39 (= ( turn − t ime s i t e 1 s i t e 5 ) 6 8 1 )
40 (= ( turn − t ime s i t e 2 s i t e 1 ) 1 4 9 )
41 (= ( turn − t ime s i t e 2 s i t e 3 ) 3 7 0 )

42 (= ( turn − t ime s i t e 2 s i t e 4 ) 6 2 1 )
43 (= ( turn − t ime s i t e 2 s i t e 5 ) 5 5 8 )
44 (= ( turn − t ime s i t e 3 s i t e 1 ) 5 1 3 )
45 (= ( turn − t ime s i t e 3 s i t e 2 ) 3 7 0 )
46 (= ( turn − t ime s i t e 3 s i t e 4 ) 6 7 8 )
47 (= ( turn − t ime s i t e 3 s i t e 5 ) 4 9 0 )
48 (= ( turn − t ime s i t e 4 s i t e 1 ) 7 0 4 )
49 (= ( turn − t ime s i t e 4 s i t e 2 ) 6 2 1 )
50 (= ( turn − t ime s i t e 4 s i t e 3 ) 6 7 8 )
51 (= ( turn − t ime s i t e 4 s i t e 5 ) 2 3 7 )
52 (= ( turn − t ime s i t e 5 s i t e 1 ) 6 8 1 )
53 (= ( turn − t ime s i t e 5 s i t e 2 ) 5 5 8 )
54 (= ( turn − t ime s i t e 5 s i t e 3 ) 4 9 0 )
55 (= ( turn − t ime s i t e 5 s i t e 4 ) 2 3 7 )
56 ( a t 500 ( o b s e r v a b l e s i t e 1 ) )
57 ( a t 1000 ( not ( o b s e r v a b l e s i t e 1 ) ) )
58 ( a t 5 ( o b s e r v a b l e s i t e 2 ) )
59 ( a t 500 ( not ( o b s e r v a b l e s i t e 2 ) ) )
60 ( a t 450 ( o b s e r v a b l e s i t e 3 ) )
61 ( a t 1050 ( not ( o b s e r v a b l e s i t e 3 ) ) )
62 ( a t 500 ( o b s e r v a b l e s i t e 4 ) )
63 ( a t 2500 ( not ( o b s e r v a b l e s i t e 4 ) ) )
64 ( a t 1050 ( o b s e r v a b l e s i t e 5 ) )
65 ( a t 2500 ( not ( o b s e r v a b l e s i t e 5 ) ) )
66 )
67 )

Listing 2: A sample satellite HDDL 2.1 problem
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